Structure and fragmentation properties of small carbon clusters and fullerenes

Fernando Martín

Departamento de Química, C-9 Universidad Autónoma Madrid, Spain

Small carbon clusters: Structure and fragmentation

Experiments in Tandem (Orsay)

Fragmentation models

Weisskopf method

Time dependent description of the fragmentation process.

Thermodynamic equilibrium (not information on the time dependence).

S. Diaz-Tendero et al. Phys. Rev. A 71, 033202 (2005) — M4Nano

Electronic Structure Calculations

Method: Density Functional Theory

- Geometry optimization.
- Stability and spin contamination analysis.
- Harmonic frequencies and Zero Point Energy correction.
- Moments of inertia.

• Electronic energies: CCSD(T) // DFT

M4Nanc

Geometries

S. Diaz-Tendero et al. J. Phys. Chem. A 106, 10782 (2002) S. Diaz-Tendero et al. Phys. Rev. A 71, 033202 (2005) M4Nano

Fragmentation: energy dependence

C_7 fragmentation

DE MADRID

Fragmentation: energy distribution

Comparison with experiment

M4Nano

G. Martinet, S. Diaz-Tendero et al. Phys. Rev. Lett 93, 063401 (2004)

Comparison with experiment

Fullerenes: Structure and fragmentation

Experiments

H. Cederquist et al. Phys. Rev. A **61**, 022712 (2000) Ar⁸⁺-C₆₀ (16 keV)

M4Nano

T. Schlathölter et al. Phys. Rev. Lett. 82, 73 (1999)

UNIVERSIDAD AUTONOMA

Fullerene structure

Classical fullerenes

- Cage exclusively formed by hexagons and pentagons
- 12 pentagons are needed (Euler)

How many possibilities are there?

Fullerene structure

Adjacent pentagons introduce strain

Isolated Pentagon Rule (IPR)

The most stable and abundant fullerenes only present isolated pentagons: C_{60} and C_{70}

Pentagon Adjacency Penalty Rule (PAPR)

If pentagons cannot be isolated, the fewer pentagon adjacencies the better.

Stone-Wales transformations

A mechanism to generate adjacent pentagons.

Fullerene structure

Hollow sphere model for π electrons

Closed shells have additional stability Number of π electrons (atoms) 2, 8, 18, 32, 50, 72 ... Rule 2 (N+1)² – Spherical Aromaticity M4Nano

Fullerenes studied

M4Nano

$\begin{bmatrix} & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & $			
IPR (C ₇₀ , C ₆₀)			
PAPR (others)			
Sphericity Rule (C ₅₀ , C ₅₂ ²⁺)			
Non classical fullerenes (C ₆₂)			
S. Díaz-Tendero <i>et al., J. Chem. Phys</i> , 119 , 5545 (2003) G. Sánchez <i>et al. Chem. Phys. Lett.</i> 416 , 14 (2005)			

S. Díaz-Tendero et al., Int. J. Mass Spect., 252 126 (2006)

Dissociation energies

S. Díaz-Tendero et al., J. Chem. Phys, 119, 5545 (2003)

- G. Sánchez et al., Chem. Phys. Lett., 416, 14 (2005)
- S. Díaz-Tendero et al., Int. J. Mass Spect., 252 126 (2006)

Ionization Potentials

Endohedral derivatives x@C₅₀

V	q	D _{5h}	D ₃
^		5AP / SP=1.7	6AP / SP=0.6
Li	-0.8	0.0	7.6
Li+	0.2	0.9	0.0
He	0.0	2.2	0.0
He+	1.0	0.0	9.1

Highly charged C₆₀^{q+}

Fission Barriers

Dissociation energies

Dissociation energies

Fission barriers: PES

DE MADRID

Fission barriers: Transition states

S. Díaz-Tendero *et al.*, *Phys. Rev. Lett.*, **95**, 013401 (2005) S. Díaz-Tendero *et al.*, *J. Chem. Phys*, **123**, 184306 (2005) M4Nano

Fission barriers: Transition states

S. Díaz-Tendero *et al.*, *J. Chem. Phys*, **123**, 184306 (2005)

Fission barriers: KER

Fission barriers: Coulomb limit

S. Díaz-Tendero *et al., Phys. Rev. Lett.,* **95**, 013401 (2005) S. Díaz-Tendero *et al., J. Chem. Phys*, **123**, 184306 (2005) M4Nano

Rational synthesis of fullerenes

C₆₀H₃₀ is a precursor of C₆₀

Rational synthesis of fullerenes

Dehydrogenation models

M4Nano

E. Buñuel, et al., ChemPhysChem 7, 475 (2006)

- -Deposition of fullerene derivatives on surfaces
- -Structure and fragmentation of C_{70}^{q+} (q = 0,14) and C_{70} derivatives
- -Clusters of clusters (fullerenes)

Co-workers

M. Alcamí

S. Díaz-Tendero G. Sánchez

P. A. Hervieux (Strasbourg)

K. Wohrer, M. Chabot (Orsay)

D. Cárdenas, E. Buñuel, J. Marco-Martínez (DQO-UAM)

H. Zettergren

Departamento de Química, C-9

Group TEORUAM C-IX (NANOMAGNET)

M. Alcamí

H. Zettergren

S. Díaz-Tendero G. Sánchez

Y. Wang

P. López

Departamento de Química, C-9

