Exchange bias dependence in gradually patterned antiferromagnet

R. Morales^{1,2}, J.E. Villegas³, Ali C. Basaran⁴, D. Navas⁵, N. Soriano⁵, X. Batlle⁶, F. Castaño⁵, and Ivan. K. Schuller⁴

¹Dpto. de Química-Física, BCMaterials, Universidad del País Vasco UPV/EHU, 48940 Leioa, Spain.
²IKERBASQUE, Basque Foundation for Science, 48011 Bilbao, Spain.
³Unité Mixte de Physique CNRS/Thales, Université Paris Sud, 91405 Orsay, France
⁴Department of Physics and Center for Advanced Nanoscience, University of California San Diego, La Jolla 92093 CA, USA

Dpto. de Química-Física, Universidad del País Vasco UPV/EHU, 48940 Leioa, Spain.
Departament de Física Fonamental and Institut de Nanociència i Nanotecnologia, Universitat de Barcelona, 08028 Barcelona, Catalonia, Spain

Contact e-mail: rafael.morales@ehu.es

Exchange bias is a phenomenon associated with the exchange interaction at the antiferromagnetic/ferromagnetic (AF/FM) interface. The exchange coupling between dissimilar materials shifts the center of the hysteresis loops along the external field axis by an amount known as exchange bias field (H_{EB}). It is generally assumed that H_{EB} decreases as FM thickness (t_{FM}) increases following a dependence of $1/t_{FM}$ [1]. In this work we investigate the dependence of FM layer thickness on the exchange bias field in continuous and patterned FeF_2 /FM (FM = Ni, FeNi) bilayers. The AF layer was gradually etched in patterned samples using a photolithography mask (Figure 1). t_{FM} varies from 3 to 100 nm whilst the AF thickness under the FM layer was kept constant at 70 nm. Experimental measurements reveal that H_{EB} vs t_{FM} largely deviates from the dependence of $1/t_{FM}$. A theoretical model considering spring-like domain walls through the FM layer [2,3] and a finite AF anisotropy [4] is taking into account to explain the results.

Work supported by MICINN and MINECO grants FIS2008-06249, MAT2010-20798, MAT2012-33037, European FEDER funds, European Community FP7-PEOPLE-2012-IRSES-318901 and the US Department of Energy DE FG03-87ER-45332.

References]

- [1] J. Nogués, Ivan K. Schuller, J. Magn. Magn. Matter. 192 (1999) 203.
- [2] R. Morales, Z-P. Li, O. Petracic, X. Batlle, and Ivan K. Schuller, Appl. Phys. Lett. 89 (2006) 072504
- [3] R. Morales et al., Appl. Phys. Lett. 95 (2009) 092503
- [4] M. Kiwi, J. Mejia-Lopez, R. D. Portugal, and R. Ramirez, Europhys. Lett., 48 (1999) 573

Figures

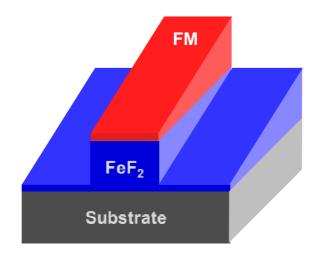


Figure 1. A wedged FeF₂/FM sample patterned into stripes