Nanographenes by chemical synthesis in solution

Diego Peña, Dolores Pérez, Enrique Guitián

Centro de Investigación en Química Biolóxica e Materiais Moleculares (CIQUS)
Campus Vida, Universidade de Santiago de Compostela
15782-Santiago de Compostela, Spain
diego.pena@usc.es

Chemical synthesis has become an useful method to prepare well-defined nanographenes.[1] This bottom-up approach avoids the structural inhomogeneity implicit in other methods to prepare graphene, and it provides access to nanographenes with different topologies and peripheries, a crucial feature to control the properties of these carbon-based material.

In this contribution we describe our efforts to prepare graphene molecules by chemical synthesis in solution (Figure 1).² Some of these molecules turn out to be especially suitable to be studied by NC-AFM with atomic resolution (Figure 2).³

References

[1] L. Chen, Y. Hernández, X. Feng, K. Müllen, Angew. Chem. Int. Ed., 51 (2012) 7640.

[2] J. M. Alonso, A. E. Díaz-Álvarez, A. Criado, D. Pérez, D. Peña, E. Guitián, Angew. Chem. Int. Ed., 51 (2012) 173.

[3] L. Gross, F. Mohn, N. Moll, B. Schuler, A. Criado, E. Guitián, D. Peña, A. Gourdon, G. Meyer, Science, 337 (2012) 1326.

Figure 1. Some examples of nanographenes obtained by chemical synthesis in solution.

Figure 2. Nanographene 1 by NC-AFM (see ref 3 for details).