LUMINESCENT PROPERTIES OF TRANSPARENT NANOSTRUCTURED Eu³⁺ DOPED SnO₂-SiO₂ GLASS-CERAMICS PREPARED BY SOL-GEL METHOD

J. DEL-CASTILLO, M.E. TORRES AND A.C. YANES

Depto. Física Básica, Universidad de La Laguna, Avda. Fco Sánchez s/n, 38206 La Laguna, Tenerife. SPAIN E-mail: <u>fivargas@ull.es</u>

J. MÉNDEZ-RAMOS AND V.D. RODRÍGUEZ Depto. Física Fundamental y Experimental, Electrónica y Sistemas Universidad de La Laguna, Avda. Fco Sánchez s/n, 38206 La Laguna, Tenerife. SPAIN E-mail: vrguez@ull.es

There is a growing interest in transition metal and rare-earth ions doped nanoparticles due to their size-dependent physical properties and potential applications in optoelectronic technology (high brightness displays, laser emitters, fluorescent markers, . . .).¹ Tin oxide (SnO₂), on the other hand, is a very important n-tipe semiconductor with a wide band gap ($E_g = 3.6 \text{ eV}$ at 300 K) with different interesting applications (gas sensor, transparent conducting electrode, . . .).²

Glass-ceramics of the system $(100-x)SiO_2-xSnO_2$ with x from 1 to 10, doped with 0.4 mol% of Eu³⁺ have been prepared by thermal treatment of precursor sol-gel glasses; where dependence on annealing temperature and time has been analyzed. The segregated SnO₂ nanocrystals present a size distribution dependent on the preparation conditions. The samples structural analysis have been made by High Resolution Transmission Electron Microscopy (HRTEM) and X-ray Diffraction (XRD). The obtained mean nanocrystal sizes, with radius ranging from 2 to 10 nm, are comparable to the bulk exciton Bohr radius, corresponding to a wide band-gap quantum-dot SnO₂ system in an insulator SiO₂ glass. In these strong confinement conditions the energy gap presents a high dependence on the nanocrystal size.³ Taking advantage of this effect, it has been possible to excite selectively the Eu³⁺ ions located in the SnO₂ nanocrystal, by energy transfer from the semiconductor host⁴, obtaining different Eu³⁺ emission spectra and lifetimes for each nanocrystal size. Moreover, the spectroscopic properties of the Eu³⁺ ions in the SnO₂ nanocrystals have been compared with those of the ions remaining in the silica glassy matrix.

- N. Chiodini, A. Paleari, D. DiMartino and G. Spinolo. Appl. Phys. Letters 81, 9 (2002).
- 2. F. Gu, S.F. Wang, M.K. Lu, Y.X. Qi, G. J. Zhou, D. Xu and D.R. Yuan. Opticcal Materials 25 59-64 (2004).
- 3. M. Nogami, T. Enomoto and T. Hayakawa. J. Lum. 97, 147 (2002).
- 4. A.C. Yanes, V.D. Rodríguez, J. Del Castillo, J. Méndez-Ramos, M. Torres and J. Peraza. To be published.

ACKNOWLEDGEMENTS: The authors would like to thank "Gobierno Autónomo de Canarias" (PI 2003/054), "Comisión Interministerial de Ciencia y Tecnología" (MAT 2001-3363) and "Universidad de La Laguna" (Beca asociada al SEGAI) for financial support.

TOPICS + **KEYWORDS**: Nanocrystals, quantum-dots, wide band gap semiconductors, SnO_2 , sol-gel glasses, Eu^{3+} ions.