Magnetism in Pd Particles

MAGNETISM IN TWO DIMENSIONAL STRUCTURES: Stacking Faults, Twin Boundaries and Surfaces in Pd

Félix Yndurain

Departamento de Física de la Materia Condensada Universidad Autónoma de Madrid

Can small Pd particles have different physical properties than bulk crystals?

Magnetic Metals

	PERIODIC CHART OF THE ELEMENTS																
IA	IIA	IIIB	IYB	¥Β	¥ΙΒ	γIIB		VIII		IB	IIB	IIIA	IVA	YA	ΥIA	YIIA	GASES
1 H 1.00797				ſ		Ma	and	otio								1 H 1.00797	2 He 4.0026
3 Li 6.939	4 Be 9.0122			l		Ivia	ynd	FUC				5 B 10.811	<mark>б</mark> 12.0112	7 N 14.0067	8 15.9994	9 F 18.9984	10 Ne 20.183
11 Na 22.9898	12 Mg ^{24.312}											13 Al 26.9815	14 Si 28.086	15 P 30.1738	16 S 32.064	17 CI 35.453	18 Ar ^{39.948}
19 K 39.102	20 Ca 40.08	21 Sc 44.956	22 Ti 47.90	23 V 50.942	24 Cr 51.996	25 Mn ^{54.9380}	26 Fe 55.847	27 Co 58.9332	28 Ni 58.71	29 Cu 63.54	30 Zn 65.37	31 Ga 69.72	32 Ge 72.59	33 As 74.3216	34 Se 78.96	35 Br 79.909	36 Kr 83.80
37 Rb 85.47	38 Sr 87.62	39 Y 88.905	40 Zr 91.22	41 Nb 92.906	42 Mo 95.94	43 Tc (99)	44 Ru 101.07	45 Rh 102.905	46 Pd 106.4	47 Ag 107.870	48 Cd 112.40	49 In 114.82	50 Sn 118.69	51 Sb 121,75	52 Te 127.60	53 126.904	54 Xe 131.30
55 CS 132.905	56 Ba 137.34	*57 La ^{138.91}	72 Hf 178 49	73 Ta 180.948	74 W 183.85	75 Re 186.2	76 OS 190.2	77 r 192.2	78 Pt 195.09	79 Au 196.967	80 Hg 200.59	81 TI 204.37	82 Pb 207.19	83 Bi 208.980	84 Po (210)	85 At (210)	86 Rn (222)
87 Fr (223)	88 Ra (226)	≜89 Ac (227)	104 Rf (261)	105 Db (262)	106 Sg (265)	107 Bh (262)	108 Hs (265)	109 Mt (266)	110 ? (271)	111 ? (272)	112 ? (277)						
Numbers in parenthesis are mass numbers of most stable or most 58 59 60 61 62 63 64 65 66 67 68 69 70 71																	
Atomic weights corrected to conform to the 1963 values of the			he $\begin{bmatrix} C \\ 14 \end{bmatrix}$	Ce Pr Nd Pm Sm Eu G			ad Tb Dy Ho Er Tm Yb Lu				U 4.97						
Commission on Atomic Weights. The group designations used here are the former Chemical Abstract Service numbers.			• ‡∆ 9 232	ctinide : b 90 9 b 90 9 10 10 10 10 10 10 10 10 10 10	Series 91 9 92 1 231) 238	2 9 J N 3.03 (2	3 9 P 37) (2	94 9 °u A 42) (24	15 m 43) (2	26 9 m B 47) (24	i 7 9 ik 0 47) (2	18 9 51 E 49) (2)	9 1 S F	00 1 m N (2	D1 1 Id N 56) (2	02 1 0 L 56) (2	03 . r 57)

Ni (magnetic) and Pd (non-magnetic)

Both with the fcc Structure

IA

Fer romagnetism in fcc Twinned 2.4 nm Size Pd Nanoparticles

B. Sampedro,^{1,2} P. Crespo,^{1,2} A. Hernando,^{1,2} R. Litrán,³ J. C. Sánchez López,³ C. López Cartes,³ A. Fernandez,³ J. Ramírez,⁴ J. González Calbet,^{1,4} and M. Vallet^{1,5}

Can two-dimensional defects induce magnetism in Pd?

FIG. 2 (a) Fourier filtered HRTEM image of a Pd nanoparticle (diameter = 2 nm). The twin boundary is arrowed (b) Corresponding FT diffraction pattern along the [111] direction. The splitting of the FT spots due to twinning is indicated (c) Fourier filtered HRTEM image of a Pd nanocrystal (diameter = 4.4 nm) showing two twin boundaries.

Surface Ferromagnetism of Pd Fine Particles

T. Shinohara* and T. Sato

Department of Applied Physics and Physico-Informatics, Faculty of Science and Technology, Keio University, Hiyoshi, Yokohama 223-8522, Japan

T. Taniyama

Is Magnetism in Pd a Surface Effect?

The field dependence of the magnetization of Pd fine particles with a clean surface (solid symbols, average radius of 115 Å) and after adsorption with O₂ atoms (open symbols, average radius of 108 Å) at various temperatures.

Pd in the form of small particles has new physical properties

Why?

Method of Calculation: First Principles Calculations based on the SIESTA Method

(Spanish Initiative for Electronic Simulations with Thousands of Atoms)

- Apart from that of Born and Oppenheimer, the most basic approximations concern the treatment of exchange and correlation (XC), and the use of pseudopotentials.
- Exchange and correlation are treated within Kohn–Sham Density Functional Theory, allowing for both the local (spin) density approximation (LDA/LSD).
- Standard norm-conserving pseudopotentials in their fully nonlocal form are used.
- Localized functions are used as basis to expand the one-electron eigenfunctions.
- Scalar-relativistic effects and the nonlinear partial-core correction to treat XC in the core region can be included.

Density-Functional Theory

- *1.* $\Psi(\{\vec{r}_i\}) \rightarrow \rho(\vec{r})$ particle density
- 2. As if non-interacting electrons in an effective (self-consistent) potential

PSEUDOPOTENTIALS: BASIC IDEA

- Localized Orbitals
- Plane Waves

SIESTA and these calculations

In some cases to check the SIESTA results

Strictly localised

(zero beyond cut-off radius)

Closed-packed structures

(or, what does stacking fruit have to do with solid state physics?)

Closed-packed structures

There are an infinite number of ways to organize spheres to maximize the packing fraction.

The centres of spheres at A, B, and C positions (from Kittel)

There are different ways you can pack spheres together. This shows two ways, one by putting the spheres in an ABAB... arrangement, the other with ACAC.... (or any combination of the two works)

The fcc and hexagonal closed-packed structures (hcp) are formed from packing in different ways. Cubic fcc has the stacking arrangement of ABCABCABC... hcp has the arrangement ABABAB....

fcc (looking along [111] direction

hcp

A B C A B C

Magnetic moment and total energy of fcc Pd versus lattice constant

Equilibrium n-n distance: 2.76 Å Exp. 2.75 Å

Pd in the fcc structure, at the equilibrium lattice constant, is paramagnetic

Simple model for itinerant magnetism in transition Metals.

The exchange energy is proportional to the exchange integral J

$$E_X = J \cdot N_{\uparrow} N_{\downarrow} = \frac{1}{4} J \cdot (N^2 - M^2)$$

Stoner criterion for Magnetism

Increase of kinetic energy $\Delta E_K \approx \left[\frac{1}{4N(E_F)}\right]M^2$ (spin-down):

Decrease of exchange energy: $\Delta E_X = -J \cdot M^2$

$$\Delta E = \Delta E_K + \Delta E_X = \frac{1}{4} \left[\frac{1}{N(E_F)} - J \right] M^2$$

 $J \cdot N(E_F) > 1$

Stoner criterion:

Density of states of paramagnetic Pd in the fcc and hcp structures

Density of states of paramagnetic Pd in the fcc and hcp structures

- a) The d bandwith is almost identical in both structures.
- b) The shape of the density of states curves are very different.
- c) The density of states at the Fermi level is higher in the case of the hcp structure (1.434 states per atom per eV and per spin) than in the fcc one (1.145 states per atom per eV and per spin).

If Stoner's parameter $I \sim 0.71 \text{ eV}^* \rightarrow \text{hcp can be Magnetic}$

- hcp: $I \times D(E_F) = 1.02 > 1$
- fcc: $I \times D(E_F) = 0.81 < 1$

 N. Takano, T. Kai, K. Shiiki, and F. Terasaki, Solid State Commun. 97, 153 (1996).

Paramagnetic fcc Pd Electronic Structure

ENERGY RELATIVE TO FERMI ENERGY (eV)

Magnetic moment and total energy of hcp Pd versus lattice constant

Pd in the hcp structure is magnetic

Pd in the hcp structure, at the equilibrium lattice constant, is ferromagnetic

Comparison between

fcc and hcp

Same nearest-neighbor distance and bond angles

Different stacking sequences of hexagonal layers

fcc		hcp)	St-fault		
		-				
		-		Cubic	А	
Cubic A	.	Hex	А	Cubic	В	
Cubic E	6	Hex	В	Cubic	С	
Cubic C	;	Hex	Α	Hex	А	
Cubic A	.	Hex	В	Hex	С	
Cubic E	5	Hex	Α	Cubic	А	
Cubic C	;	Hex	В	Cubic	В	
				Cubic	С	

What could we expect near stacking faults?

DOS model calculation (Γ-point) Yndurain & Falicov, Phys. Rev. Lett. 34, 928 (1976)

The Density of States at the top of the d-bands is enhanced:

Favors magnetism

DIFFERENT STACKING CONFIGURATIONS

Magnetic anomalies observed experimentally in Co* and Ni** different stackings can be interpreted along similar lines.

*Detecting Electronic States at Stacking Faults in Magnetic Thin Films by Tunneling Spectroscopy. A. L. Vázquez de Parga, F. J. García-Vidal, and R. Miranda, 85, 4365 (2000)

*Spin-Polarized Scaning Tunneling Spectroscopy of Nanoscale Cobalt Islands on Cu (111), O. Pietzsch et al. Phys. Rev. Lett. **92**, 057202 (2004)

Stacking Reversal as a Source of Perpendicular Magnetic Anisotropy in Ni-Pt Multilayers, O. Robach et al. Phys. Rev. B **67, 220405(R) (2003)

Spin-Polarized Scanning Tunneling Spectroscopy of Nanoscale Cobalt Islands on Cu(111)

O. Pietzsch,* A. Kubetzka, M. Bode, and R. Wiesendanger

Spin-resolved tunneling spectra

Is Magnetism in Pd a Surface Effect?

A Surface free fcc (100) Pd Slab is Paramagnetic

Other Pd NanoStructures

"Magnetism in Atomic-Size Palladium Contacts and Nanowires" A. Delin, E. Tosatti and R.Weht, Phys. Rev. Lett. **92**, 57201 (2004)

Magnetism in Pd Chains

Bond length (Å)

CONCLUSIONS

- Small Pd particles are magnetic whereas bulk fcc is not
- Pd in the hcp phase (38 meV higher than the fcc) is ferromagnetic
- Stacking-faults in otherwise fcc Pd are magnetic
- Isolated faults are magnetic
- Our results are consistent wit experiments in small clusters
- Free Pd surfaces are not magnetic
- Magnetic anomalies observed experimentally in Co and Ni stacking can be interpreted along similar lines.
- Further study: Pd islands on top of Cu (111) surface

Acknowledgments

Simone S. Alexandre Eduardo Anglada José María Soler

Departamento de Física de la Materia Condensada Universidad Autónoma de Madrid, Spain

Work supported Spanish MEC through grants BFM2002-10510-E and BFM2003-03372.

