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Classical Babinet principle is only rigorous for 
infinitely thin perfect conducting screens. A different 
“Babinet theorem” applicable to penetrable and 
thick plasmonic screens is presented in this 
contribution. 
 

We will consider the quasi-static 2D problem shown 
in Fig.1, consisting in a 2D piecewise homogeneous 
region filled by some media with relative dielectric 
constants εi, which supports a quasielectrostatic 
electric field E =−∇tɸ(x, y) = − ux∂xɸ − uy∂yɸ, where 
ɸ (x, y) satisfies Laplace’s equation ∇t

2ɸ = 0. Surface 
plasmons and bound solutions for ɸ (x, y) may exist 
if there is at least one εi with Re(εi) < 0, and at least 
one εj with Re(εj) > 0. In such case, the electric field 
inside each region must satisfy ∇t × ɸ = 0 and ∇t·Ei=0, 
as well as the boundary conditions at the border 
between i and j media n×(Ei−Ej)=0 and n·(εiEi−εjEj)=0, 
where n is the unit vector normal to this border and 
contained in the xy plane. 
 

 

 
 
 

Figure 1: Illustration of a planar nanocircuit like those analyzed in this 
contribution. 
 

 

The “complementary” structure is obtained by 
substituting the permittivities εi by the 
“complementary” ones ε′i = C1/ εi where C1 is an 
arbitrary constant (for the particular case of a two-
phase planar region we can choose C1 = ε1ε2 in order 
to recover conventional complementarity). The 
“complementary” fields E′i inside each region of the 
complementary structure are defined by:  

E′i = C2 εi uz × Ei            (1) 
where C2 is an arbitrary constant. It is shown that 
these fields also satisfy the quasi-electrostatic 
equations. Let be A, B, C and D some fixed points in 
the original and the complementary structures (see 
Fig.1). Let us define the voltage integral between A 
and B and the current integral through the path C−D 
as: 
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where h is the thickness of the circuit board. Let us 
assume that we can define some meaningful 
impedances Z = VAB/ICD for the structure of Fig.1 and 
Z′ = V′AB/I′CD for its complementary one. By using (1) 

in (2) we obtain:       2
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where 
0 0k = ε / μ is the phase constant and 

0 0 0Z = ε / μ is the vacuum impedance. Let us now 

consider a diffraction screen made of a periodic 
planar nano-circuit [1]-[3]. Since nano-circuits must 
be electrically small [1], the periodicity must be 
small too. Therefore, we can describe the screen as 
a surface impedance sheet. This surface impedance 
will be, in general, a 2D symmetric tensor whose 
main values are related with the nano-circuit 
impedances. The surface impedance along a main 
axis of this tensor can be computed as Zs = ZlCD/lAB 
with Z defined above with the paths A−B and C−D 
chosen as straight lines going across the whole unit 
cell and directed along the proper main axes of the 
surface impedance tensor (lAB and lCD are the lengths 
of the corresponding paths). Specifically, this surface 
impedance Zs describes the behavior of the screen 
for incident light polarized along the A→B direction. 
For the “complementary” screen, the surface 
impedance for incident light of orthogonal 
polarization is Z´s = Z´lCD/lAB, with Z′ defined above. 
The transmission coefficient for the first screen and 
the considered incident light is:   
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and the transmission coefficient for the 
complementary screen: 
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which for K = 1 reproduces the well known Babinet 
relation t+t′= 1 for infinitely thin perfect conducting 
complementary screens. If K ≠ 1, Eqs. 4-5 still 
reproduce many of the main predictions of Babinet 
principle. For lossless media, the transmittance |t|2 
has a zero when and |t′|2 has a maximum when 
|Z|→0. For lossy media |Z| never goes to zero, and 
the minimum of |t|2 occurs at the minimum of |Z|, 
whereas the maximum of |t′|2 occurs at the 
minimum of |KZ|. This may lead to some deviation 
between the minimum of |t|2 and the maximum of 
|t′|2. Eqs. 4-5 can be considered as the 
generalization of Babinet principle for planar nano-
circuits. However, they are still approximate and 
valid in the quasi electrostatic limit and as far as the 
effects of fringing fields can be neglected. Since 
these constrains are approximately fulfilled by many 
planar nano-circuit [1]-[3] and metallic metamaterial 
“atoms” [4]-[5], this theory is expected to be useful 
for the analysis of these structures. 
 
 

 
 

 

Figure 2: Left: transmission through two complementary 1D diffraction 
screens made of alternating layers of copper and silicon (unit cells 
shown aside). Dimensions are w1 = 50 nm, w2 = 10 nm and h = 25 nm. 
Right: transmission through complementary silver SRR and CSRR 
screens with r = 100 nm, g = 10 nm, w = 30 nm and h = 60 nm. 
Periodicity is 250 nm. 
 

 

We have applied our theory to the analysis of the 
structure shown in the inset of Fig.2 (left). It is a 1D 
diffraction screen made of alternating layers of 
copper and silicon (ε ≈ 11.9) which can be seen as 
the realization of an optical nano-circuit [6]. We first 
computed the transmittance through the screen 
using the commercial solver CST Microwave Studio, 
and then obtained the transmittance through the 
complementary screen from (4)-(5) after elimination 
of the common variable Z. The results are shown in 
Fig.2, where a very good agreement between our 
theory and the electromagnetic simulations can be 
observed. The results coming from conventional 
Babinet principle (t + t′ = 1), also plotted, show a 
significant deviation from the computed ones, as 

expected from the properties of the media involved 
in the screen. Our theory has also been applied to 
the computation of the transmittance through 
screens made of conventional and complementary 
SRRs operating in the optical range (Fig.2 (right)), 
and also approaches reality better than 
conventional Babinet principle (t + t′ = 1), in spite of 
the fact that SRRs can not be considered as purely 
quasi-electrostatic entities except at very high 
frequencies, i.e. beyond saturation [7]. Finally, we 
have computed the transverse components of the 
electric field displacement and the electric field in 
the middle plane of the SRR and the CSRR studied in 
Fig. 2 (right), respectively. According to our theory 
the orthogonal components of these fields must 
show a similar behavior. This fact is confirmed in Fig. 
3 where the results of the aforementioned 
computations are shown. 
 
 

 
 

 

Figure 3: Electric field displacement components in the middle plane of 
the SRR (a), (b) and electric field components in the middle plane of 
the CSRR (c), (d) at a frequency of 100THz. The resemblance between 
the distribution of the cross components of the displacement and 
electric field in both structures is in accordance with the hypothesis of 
the theorem reflected in equation (2). 
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