

UltraGaN project: Breakthrough in GaN devices thanks to InAIN/GaN heterostructure

C. Giesen, M. Heuken, B. Schineller, Aixtron, Germany

M.-A. diForte-Poisson, C. Dua, J.-C. Jacquet, E. Morvan, N. Sarazin, ATL, France J.-F. Carlin, M. Gonschorek, N. Grandjean, M. Py, EPFL, Switzerland A. Georgakilas, E. Iliopoulos, G. Konstantinidis, FORTH, Greece K. Cico, K. Fröhlich, IEE, Slovakia J.-C. De Jaeger, C. Gaquière, IEMN, France E. Kohn, F. Medjoub, TUU, Germany J. Kuzmik, D. Pogany, G. Pozzovivo, TUW, Austria

Ultra

Title : UltraGaN project Date : 14-11-2007 Authors : S. Delage et al.

November 13-16, 200

2nd EU FET-Cluster meeting

Why we do believe in InAIN/GaN Heterostructure for ultra High Power Microwave Applications ?

- In_{0 18}AI_{0 82}N is lattice-matched to GaN
 - Strong spontaneous polarisation allowing high density 2-D gas without mechanical stress,
 - Improved reliability expected
 - Flexibility for choosing barrier layer thickness (gate length WBG thickness ratio), i.e. higher frequency achievable.
 - Stronger spontaneous polarisation, which could triple the AlGaN one.
 - Higher 2D gas density (**3A/mm** expected for 0.25µm gate length)

Physical Properties of lattice-matched InAIN/GaN Heterostructure

RMS = 0.6nm (AFM)

- Low roughness (atomic steps)
- Excellent 2-dimensional growth
- Demonstration of HEMT heterostructure for barrier thickness as thin as 2.5nm !

	2nd EU FET-Cluster meeting	
	The second second second second second	November 13-16, 2007
<u> </u>	Las Palmas de Gran Canaria (Spain)	

electron sheet density (10^13 cm-2)

4

3.5

3

2.5

2

1.5

1

0.5

0

0

5

10

15

AIN+AIInN barrier thickness

20

Fit:

2.5 nm

polarization charges: 3.1 10^13 cm-2 Critical thickness:

C-V 300K Hall 300K

Hall 77K

25

30

Ultra

35

Sheet Carrier Density versus Indium Composition

Las Palmas de Gran Canaria (Spain)

In_xAI_{1-x}N bandgap versus composition

• Bowing parameter decreases monotonically with InN mole fraction

$$b(x) = \frac{a}{1+b \cdot x}$$
 with $a = 14.3 \pm 1.5$ eV and $b = 4.5 \pm 0.9$

Title : UltraGaN project Date : 14-11-2007 Authors : S. Delage et al.

InAIN/GaN HEMT Wafer Uniformity

Sheet resistance mapping of 2-inch wafer

Statistical Summary	
Number of Test Points	55
Average Value	212.9
Maximum Value	219.7
Minimum Value	208.1
Sample Spread (%)	5.56
Std Dev Value	2.3
Wafer Uniformity Value (%)	<mark>1.09</mark>

 $n_s = 2.3 \times 10^{13} \text{ cm}^2$ $\mu = 1510 \text{ cm}^2 \text{ V}^{-1} \text{s}^{-1}$ Barrier thickness = 14 nm 6

Ultra

Title : UltraGaN project Date : 14-11-2007 Authors : S. Delage et al.

Las Palmas de Gran Canaria (Spain)

2nd EU FET-Cluster meeting

November 13-16, 2007

Example of HEMT Devices developed in UltraGaN

2nd EU FET-Cluster meeting

Las Palmas de Gran Canaria (Spain)

Optical photography of 2-inch wafer

November 13-16, 2007

Title : UltraGaN project Date : 14-11-2007 Authors : S. Delage et al.

Information included in this document is the property of TIGER. It must be disclosed without the pr

GaN

Ultra

consent of TIGER Common LAB

witten

Extremely high transconductance (up to 500 mS/mm) with 5 nm InAIN barrier thickness

GaN HEMT downscaling can be overcome

Possibility to use ultra short gate length while keeping high aspect ratio

Scaling of V_{TH} fully respected

E-Mode expected for 2 nm barrier thickness

GaN

Ultra

8

Title : UltraGaN project Date : 14-11-2007 Authors : S. Delage et al.

Low trapping effects on 2x0.25µmx75µm InAIN/GaN device Pulse Ids-Vds (500ns pulse legnth – 1% duty cycle)

Very reduced Drain + Gate Lag effects similar to best AIGaN/GaN HEMT !

Title : UltraGaN project Date : 14-11-2007 Authors : S. Delage et al.

GaN

High Temperature DC Measurements

First time a transistor operates up to 1000°C !

Title : UltraGaN project Date : 14-11-2007 Authors : S. Delage et al.

Thermal stability of 3 nm barrier InAIN/GaN HEMTs

2nd EU FET-Cluster meeting

Las Palmas de Gran Canaria (Spain)

November 13-16, 2007

Title : UltraGaN project Date : 14-11-2007 Authors : S. Delage et al.

Microwave measurements

Favourably comparable to the best AlGaN/GaN device frequency performances

Capability of this structure to operate at high frequency

nformatio

GaN

CW 10GHz 6.8W/mm Load-Pull Characteristics (without field – plate)

Vds = 30V – Vgs = -1.5V – 2x75µm – Lg=0.25µm World record using InAIN/GaN HEMT

Title : UltraGaN project Date : 14-11-2007 Authors : S. Delage et al.

GaN

UltraGaN Highlights at M24

- Can InAIN/GaN be an alternative to AIGaN/GaN HEMT ?
- ULTRAGAN answer: Yes!
 - No stress, if lattice-matched
 - Stress-free heterostructure with even double n_s
 - High thermal and chemical ceramic-like stability promising high robustness
 - HEMT demonstrated with barriers down to tunnelling thickness
 - Low dispersion effect leading to high power operation

GaN

Thank you for your attention !

Ivain.delage@3-5lab.fr

http://www.ultragan.eu

Title : UltraGaN project Date : 14-11-2007 Authors : S. Delage et al.

2nd EU FET-Cluster meeting

November 13-16, 2007

Las Palmas de Gran Canaria (Spain)

Ultra