Atomistic understanding of transport through a single dopant atom in a MOSFET

Sven Rogge

Kavli Institute of NanoScience, Delft University of Technology, The Netherlands

www.ns.tudelft.nl/pd

EU/FET Cluster meeting November 14th 2007

Atomic-scale electronics

4 nm MOSFET ???

[Asenov IEEE Trans. Elec. Dev. 50, 1837, 2003]

bulk \rightarrow atomistic: a *problem* for industry, an *opportunity* for science

٥lft

[1]

Opportunity: Use atomic nature of a dopant for new functionality

Scaling of the Bohr orbit:

- $r_{\text{dopant}} = \frac{\epsilon_{\text{r}}}{m^*} \cdot r_{\text{Hydrogen}}$ $r_{\text{Hydrogen}} = 0.05 \,\text{nm}$ $r_{\text{P:Si}} = 2.5 \,\text{nm}$
 - $r_{\rm P:Ge} = 6.4 \,\mathrm{nm}$

Physics of a single atom in a solid state matrix

- smallest length scale of a semiconductor device
- FET based on atomic orbitals
- 300 K quantum devices (deeper impurities)?

Analogy to our work: Atomic-scale electronics in a metal

FUDelft

van Ruitenbeek, RSI 67, 108, 1996 & Scheer Nature 394, 154, 1998

Atomic systems in a semiconductor

- Parabolic potential
- Constant charging energy
- Equidistant level spacing (excited states)

- Coulomb potential
- Can bind up to two electrons
- Hydrogen-like level spectrum (D⁰)
 - Valley-orbit \rightarrow

[4]

Recent progress in top-down dopant engineering

Recent progress in bottom-up dopant engineering

Schofield, PRL 91, 136104, 2003 & Russ, Nanotech. 18, 044023, 2007

New device concepts based on atomic functionality

[molecular electronics in the solid state]

[Kane Nature 393, 133, 1998]

Devices utilizing the atomic nature of a dopant atom:

- solid-state molecules based on bound states of electrons or holes in a semiconductor
- important length scale = Bohr orbit \rightarrow addressable via gate control
- quantum coherent devices: Si/Ge attractive due to long spin coherence times

New device concepts based on atomic functionality

[molecular electronics in the solid state]

[Kane Nature 393, 133, 1998]

Devices utilizing the atomic nature of a dopant atom:

- solid-state molecules based on bound states of electrons or holes in a semiconductor
- important length scale = Bohr orbit \rightarrow addressable via gate control
- quantum coherent devices: Si/Ge attractive due to long spin coherence times

New functionality in CMOS at the end of the roadmap

use ultimate CMOS technology to achieve new functionality in this material system

Atomic-scale electronics

Outline

• Atomic-scale electronics

• Access to a single dopant in a nano-MOSFET

• Atomic physics in a MOSFET

• Summary

• Other projects

How many dopants are in a FET?

- How many dopants are there?
 - N(acceptors) = 10^{18} /cm³ × ($60 \times 60 \times 35$ nm³) ≈ 125
 - N(acceptors in resonance) = $(60 + 60 + 35 \text{nm})/(10^{18}/\text{cm}^3)^{1/3} \approx 15$
 - N(donors) = less than acceptors \rightarrow may be observed individually
- Which dopants are probed?
 - acceptors: require interband tunneling \rightarrow no
 - donors: subthreshold current at interface \rightarrow yes

Transport through dopants in a MOSFET

strong recent interest in transport through dopants but not with dopants in the channel

Multi-gate FET (FinFET) from S. Biesemans group (IMEC)

[Nadine Collaert, IMEC]

- application: lithographically defined Si nanowires (fins) covered by a single gate
- our experiments: single fin devices, here fin width 15 nm & gate length 20 nm

Transport through a FinFET

Delft University of Technology

[15]

•
$$G = SA^* \frac{e}{k_{\rm B}}T \exp\left(-\frac{E_{\rm b}}{k_{\rm B}T}\right) [A^* \text{ for Si is } 2.1 \times 120 \,\mathrm{Acm}^{-2}\mathrm{K}^{-2}] \Rightarrow \mathrm{S}=4 \,\mathrm{nm}^2$$

• strong coupling 0.67, decreasing gate action above 300 mV due to barriers

Delft University of Technology

Resonant Tunneling Spectroscopy: States below the bandedge

1 in 7 samples shows two peaks below the bandedge with lower conductance and larger peak separation **TUDelft**

Stability diagram: the addition-spectrum

Delft University of Technology

Magnetic Odd / Even effects in transport spectroscopy

Outline

• Atomic-scale electronics

• Access to a single dopant in a nano-MOSFET

• Atomic physics in a MOSFET

• Summary

• Other projects

Atomic physics in the solid state

Kohn & Luttinger donor wavefunction in Si

$$\psi(\mathbf{r}) = \int F(\mathbf{k}) \phi_{\mathbf{k}}(\mathbf{r}) d\mathbf{k} \quad [H_0 + U(\mathbf{r})] \psi(\mathbf{r}) = E \psi(\mathbf{r})$$

in basis of Si Bloch functions

Properties of the envelop function:

- non-degenerate ground state of A1 symmetry
- excited triplet of symmetry T_2
- next, excited doublet of symmetry E

Level	Р	As
1s(A ₁)	45.6	53.8
$1s(T_{2})$	33.9	32.7
1s(E)	32.6	31.3
2p ₀	11.5	11.5
2p _{+/-}	6.4	6.4
3p ₀	5.5	5.5
3d ₀	3.8	3.8
	Level 1s(A ₁) 1s(T ₂) 1s(E) 2p ₀ 2p _{+/-} 3p ₀ 3d ₀	LevelP $1s(A_1)$ 45.6 $1s(T_2)$ 33.9 $1s(E)$ 32.6 $2p_0$ 11.5 $2p_{+/-}$ 6.4 $3p_0$ 5.5 $3d_0$ 3.8

Assignment of the level spectrum

Delft University of Technology

The environment of the dopant

- excited states spectrum and charging energy differ from device to device
- use charging energy to determine dopant position based on capacitance
- \bullet dopant close to interface \rightarrow region of strong band bending

Effect of the electric field: Stark shift

similar work by: Martins, PRB 69, 085320, 2004; Friesen PRL 94, 186403 2005; Debernardi, PRB 74, 035202, 2006

Calculation of donor/well system for P:Si

- below 5 nm donor/interface distance hybridization leads to avoided crossings
- hybrid wavefunction has a strong contribution of the dopant

Delft University of Technology

NEMO for our situation: Arsenic donor 3-6 nm from the interface

- perfect agreement of the tight binding calculation with bulk measurements
- a dopant close to interface leads to an anti-crossing region

[NEMO work by Rajib Rahman in Gerhard Klimeck's group at Purdue together with Hollenberg]

Hybridization with well state leads to a molecular system

co.: Rajib Rahman & Gerhard Klimeck (Purdue) and Cam Wellard & Lloyd Hollenberg (Melbourne Uni.)

Fit excited states of the dopants to model

⁻³⁰ ⁻³⁰ ⁻⁴⁰ ⁻¹⁰ ⁻			Ţ	Predicted $\mathbf{E}_{\mathbf{X},\mathbf{j}}$ (F,d)				
	Sample	10G16	11G14	13G14	HSJ18	GLG14	GLJ17	
·	Measured Ex1 (meV)	2	4,5	3,5	5	1,3	2	
	Measured Ex2 (meV)	15	13,5	15,5	10	10	7,7	
	Measured Ex3 (meV)	23	25	26,4	21,5	13,2*	15	
	Predicted F (MV/m)	37,3	31,6	35,4	26,1	23,1	21,8	
	Predicted r (nm)	3,34	3,51	3,24	4,05	5,16	4,92	
	Chi-square	0,59	0,04	0,17	0,63	0,28	0,96	
	Ex1 (meV)	2,2	4,5	3,6	4,9	1,8	1,1	
	Ex2 (meV)	15,6	13,5	15,7	10,2	10,0	7,7]
	Ex3 (meV)	23,0	25,0	26,3	21,4	13,2	15,3]

- a 2D (F, d) fit of the first 3 excited states of the model works well for the 6 samples
- $S_{\rm total}(As)=0.53\,{\rm meV}$ equal to the measurement error
- $S_{\text{total}}(\mathsf{P})=1.5 \text{ meV}$ leading to a 0.99 certainty for the As model

Comparison between data and model in a broader context

- field at the dopant site is higher than expected from the corner model
- $\bullet\,$ magnitude and functional form of polarization layer + corner field fit well
- independent capacitive data in decent agreement with tight-binding fit

[paper in preparation by Delft, Melbourne, Purdue groups]

Summary

- Transport through a triple-gate nano-MOSFET
 - corner effect \rightarrow 1D channel with 4 nm^2 cross section
- Access to a single dopant
 - ionization energy of 1st e^- consistent with As in Si
 - charging energy for 2nd e^- lowered due to electrodes
- Atomic physics in a MOSFET
 - large E-field \rightarrow strong Stark effect \rightarrow new level spectrum
 - hybrid wavefunction of dopant and interface well, anti-crossing

... Acknowledgements

People involved

• Delft

- Gert-Jan Smit (model work)
- Arjan Verduijn, Parvesh Deosarran
- Paul Rutten, Gabri Lansbergen, Hermann Sellier, vacancy (FinFET)
- Jaap Caro & Huub Salemink (group Photronic Devices)
- IMEC
 - Nadine Collaert & Serge Biesemans (FinFET)
- University of Melbourne
 - Cam Wellard, Lloyd Hollenberg (Theory)
- Purdue
 - Rajib Rahman, Gerhard Klimeck (NEMO)

