Atomic Functionalities on Silicon Devices (AFSID)

Sven Rogge

Kavli Institute of NanoScience, 2628 CJ Delft, The Netherlands

on behalf of the coordinator Marc Sanquer, CEA, France

Objectives of AFSID

- Electrical switch based on the gate control of a *single atomic orbital*, *i.e.* a single atom transistor (SAT)
- Coupled SAT-FET or SAT-SET devices to:
 - (i) measure the spin of carriers
 - (ii) use the non-monotonic transfer Id-Vg characteristics for multi-valued logic and memory functions
 - (iii) measure coherence and entanglement in the molecular orbital formed by two coupled atoms (dopants or artificial atoms)

Approach: CMOS

Las Palmas, 14/Nov/2007

Atomic Functionalities on Silicon Devices

Expected results

- fabrication of a single atom transistor (artificial atom or real dopant) with a better gate control as compared to a FET.
- a silicon SET used as an electrometer with an operating temperature much larger than 4.2K
- a SET-FET hybrid made on-chip
- a silicon device where single spin is detected

A latching switch (two-terminal, bistable device with hysteretic *I* – *V* curves)

emitter

B ↑

Collector

A spin sensitive SET

A SET-FET hybrid with non monotonic Id-Vgs characteristics, high current drive

Las Palmas, 14/Nov/2007

Atomic Functionalities on Silicon Devices

Expected impact of AFSID

Unconventional use of dopants in silicon Transport measurements to get atomic precision *Ultimate size* (the Bohr radius)

Single dopant implantation or dopant modulation $SET \rightarrow$ switches with low power dissipation (switch based on action on a single electronic charge), and large integration density.

Quantum mechanical effects \rightarrow *new functionalities* based on the non-monotonic transfer function and on quantum correlations in coupled dopants or dots.

- Prepare future applied RTD project relying on the full control of single dopants or coupled dopants.
- Establish the conditions for use, stability, robustness ... of an atomic switch
- Compare with other atomic or molecular switches
- Delivered Hybrid SAT-CMOS devices are bricks for new ICT architectures (neuromorphic networks...)

Consortium

Commissariat à l'Energie Atomique	M. Sanquer & M. Vinet
Delft University of Technology	S. Rogge
University of Tübingen	D. Kern
CNR-INFM	M. Fanciulli
Hitachi Cambridge Labs	D. Williams
University of Melbourne	D. Jamieson

Proactive Initiative Collaboration

- Participation to joint publications and events
- Comparison of obtained characteristics for our silicon SET devices and switches with molecular, CVD Nanowires, or Carbon nanotubes based devices and switches.
- Collaboration with the NoE NANOSIL (Silicon-based nanostructures and nanodevices for long-term nanoelectronics applications)
- International collaborations in particular with Australia (Centre of Excellence for Quantum Computer Technology)