Nanosciences and nano-electronics at CEA

Overview of Nanoscience at the CEA

Technologies for information and health

JP Bourgoin Director of the Nanoscience Program Jean-Philippe.Bourgoin@cea.fr

Presentation by R. Baptist robert.baptist@cea.fr

Nano-science and Nanotechnologies @ CEA

- A transverse capability involving the operational divisions of CEA operated **as a continuum from Science to Technology**
- 1900 people: 800 in Nanoscience and 1250 in Nanotechnology
 - Strong collaborations with CNRS and Universities
 - Worldwide partnerships: Europe, US, China, Korea, Canada

1900 people in Nano @ CEA ~250M€ budget 2006

The CEA Minatec Nano-Characterisation Centre

A leading edge nanocharacterisation centre in Europe :

100 researchers and students
40 characterisation tools
1 500 m² laboratories
15 M€ investment

8 Competence Centres :

- Scanning Probe Microscopy
- Electron microscopy
- X ray diffraction
- Ion beam analysis
- Mechanical tests
- Surface analysis
- Optical techniques
- Sample preparation

Material Science Research (CEA-DSM)

Technological Research (CEA-DRT)

Overview of CEA Nanoscience Program

Other facilities and infrastructures

- Networked Clean rooms in Saclay and Grenoble
- Large scale infrastructures for lasers, ions, neutrons, synchrotrons

A synergy between discovery research and program oriented research: to answer nanotechnologies questions and enrich them with upstream science at the cutting edge.

- The transverse program : involves all CEA divisions, contributing to a continuum from Science to Technology
- Minatec (Grenoble) : an ecosystem integrating fundamental and applied research.

\Rightarrow

• Make teams from fundamental research and applied research work together: cooperative projects, joint teams

- Systematically seek potential applications
- •Technological capabilities covering the continuum (example of nanodevices):
 - Fast lithography for exploratory nanodevices within the flexible clean room at CEA Saclay/Grenoble centers
 - 100 mm lithography facility 'PTA' with CNRS at Grenoble
 - 200 and 300 mm Integration Technology Platform at LETI

From fundamental research to industrial applications

- 135 patents in nanoscience (DSM)
- 1200 patents in nanotechnology (LETI)
- Beside the alimentation of the innovation pipeline through the CEA technological research division, 11 Startups directly born from nanoscience in DSM

Cellabio search

Modeling-Simulation (links with CEA supercomputing capacities)

Networked tools (Synchrotron, Neutrons, Technological Platforms) and nano-characterization

Around CMOS

ENIAC technology roadmap

Œ

Overview of CEA Nanoscience Program

Nanoscience @ CEA: topics relevant for CMOS and beyond

Coll. DOE/ANL

Chemtronics program

Chemtronics Program

180 researchers in Grenoble and Saclay in 2007 expanding to 250 by 2010

Chemistry for nanoelectronics

- Molecular electronics
 - •Molecularr memories (bi-stable molecules)
 - Carbon nanotubes
 - •Semi-conducting nanowires and QD
- Flexible electronics (polymers and composites)
- Self-assembly
- nanosimulation and new architectures
- heterogeneous integration onto Silicon

Robert.baptist@cea.fr et Serge.palacin@cea.fr

Chemtronics program Organization

Overview of CEA Nanoscience Program

Flash memory miniaturisation

Current characterisitcs: Prog Voltage: 15/20 V Prog Time : 10µs/1ms Retention time: 10 years Cycling >10⁵

SiO2

Si (N)

Molecular memories: Interdisciplinarity

1,6 1,7 1,8

Nanoscience Program

Nano-electronics

Overview of CEA Nanoscience Program JP Bourgoin

ENIAC technology roadmap

Overview of CEA Nanoscience Program

Major issues addressed by Nanoelectronics CEA teams

5 research groups: 60 researchers

- What are the quantum limits set by reduced size of nano-conductors?
- Are quantum effect a drawback for nanoelectronics?
- Can we find and exploit new quantum functionality ?
- What are the limits due to energy limitation
- \rightarrow explore quantum laws of conduction at nano- or molecular level
- \rightarrow implement quantum information functionality in nano-circuits
- \rightarrow understand quantum de-coherence mechanisms
- \rightarrow develop nanolithographic / nanostructuration techniques
- → master the positioning of molecules, Carbone Nanotubes or nanowires in circuits
- \rightarrow invent new tools to reveal new quantum effects or properties

Mesoscopic Physics and Quantum Electronics

Single atoms and molecule transport, physics and use of Josephson junctions, quantum coherent circuits, superconducting Qbits, physics of single dopants in nano-transistors, full counting statistics measurements,....

Glattli et al Science 2006

Urbina et al PRL

Overview of CEA Nanoscience Program

V≠0

Nanophotonics

Overview of CEA Nanoscience Program JP Bourgoin

ca 50 researchers mainly in Grenoble

QD and microcavities based on compound SC: CdTe, CdSe, GaN/AiN, InAs/GaAs epitaxial self-assembly , top down nanofabrication, optical spectroscopy One single photon emission

Nanostructures, microcavities and photonics crystals based on Si/SiO₂

photophysics and photochemistry of molecular assemblies new nearfield imaging techniques and applications to storage

Nanomagnetism

Nanomagnetism

- following the pioneer work on GMR
- develop spintronics (memory, logic, sensors) based on understanding basic phenomena (spin transfer) and mastering layered magnetic materials

Magnetic memories (TAM RAM, MRAM....)

B. Dieny : 30 patents filed since 1996 (11 for 2007)

Crocus created in 2006 : 30 people in Grenoble and California 13,5M€ funds

frequency tunable RF oscillators

Nanosimulation

Overview of CEA Nanoscience Program JP Bourgoin

Nanosimulation : golden age ahead

Target: a virtual lab for the design of devices, circuits, materials and systems

Including more physics: multiscale approach

From atomistic to device modelling:

- ab initio
- quantum transport
- Monte Carlo device simulation
- Compact modelling of devices
- Circuit simulation

S. Roche, F. Triozon, (CEA) C. Adessi and X. Blase (CNRS) and many co-workers...

Simulation of CNT -FETs

Exemple: aplication to the ambipolar transistor

Overview of CEA Nanoscience Program

Exemple: ambipolar transistor

Comparison with experience: Carbon nanotubes devices

M. Delaunay, CEA

Overview of CEA Nanoscience Program

Modeling-Simulation (links with CEA supercomputing capacities)

Networked tools (Synchrotron, Neutrons, Technological Platforms) and nano-characterization

- Porphyrin bottom-up CNT P3HT Molecular memory self-assembling – FerroFET – ballistic – Nanowire – DNA – Multis
- suprar
diazorThank you for your attentionance -
ling -
- STM/_____iwall silicon – nanotube – interconnect – graphene – integration –
- bifunctional Synthesis Mesoporous CMOS More Moore
- Neurone architecture Rubrene SNOM Plastic -

