Plasma Treatment of NIL polymers to enhance anti-adhesion properties

Isabel Obieta (iobieta@inasmet.es)

INDEX

- -Objective
- Plasma conditions
- Characterization techniques
- Materials
- Results

*Contact angle: lifetime

*AFM: Roughness and thickness modified

*XPS: main functional groups and depth of modification

- Imprinting trials
- Conclusions

Objective

to enhance the anti-adhesion behavior via plasma functionalization of the polymer surface in order to avoid the problems of adhesion between the stamp and the substrate during the de-moulding in the NIL process.

A process for low pressure plasma treatment has been developed, including the nature of reactive gases and the configuration of the plasma reactor.

CVD-RF (ASM) at 13,56MHz:

- a) tubular reactor, low pressure and capacitive-coupled plasma.
- b) Power: 25-150 W
- c) Time: 1-5 min
- d) Flow of reactive gases: 25-225 sccm

• MW plasma (Iplas) at 2,45GHz:

- a) Remote cold plasma
- b) Distance to plasma: 8 to 20cm
- c) Power: 1500-3000 W
- d) Time: 3-20 min
- e) Flow of reactive gases: 50-225 sccm

<u>Characterization</u>

- **Contact Angle**: verification of stability and lifetime of treatments

- **AFM**: roughness and thickness modification
- **XPS**: chemical composition and in-depth profile

MATERIALS

- mr-I 9030 (allyl from mrt) \Rightarrow 300nm thickness
- **PDAP** (allyl from mrt) \Rightarrow 280 nm thickness
- mr-I 8030(acrylate from mrt) \Rightarrow 300 nm thickness- mr-I 7030(acrylate from mrt) \Rightarrow 300 nm thickness- PMMA(acrylate from mrt) \Rightarrow 500 nm thickness

mrI-9000: RF plasma

Sample1 Time=2minPower=100W $SF_6=37,5$ Ar =150Sample2 Time=2minPower=25W $SF_6=50$ Ar =200Sample3 Time=2minPower=100W $SF_6=200$ Ar =0

RF PLASMA Time = 2min Power = 25W SF6= 50sccm Ar = 200sccm

- **Before treatment:** thickness = 287,86nm; roughness = 0,62nm
- After treatment: thickness = 248,84nm; roughness = 0,353nm

PDAP: MW plasma

- PDAP (IVb_3)
- PDAP (IVb_4) PDAP (IVb_5)
- MW 2500W 15min 2005F6 50Ar MW 2500W 5min 2005F6 50Ar MW 2000W 5min 2005F6 50Ar

No modification in the thickness, slight increase of the roughness

9

mrI-8000: RF plasma

Sample1 Time=2min Power=100W SF₆=37,5 Ar =150 Sample2 Time=2min Power=25W SF₆=50 Ar =200 Sample3 Time=2min Power=100W SF₆=200 Ar =0

Sample4 Time=1min Power=125W SF₆=37,5 Ar= 100 Sample5 Time=1min Power=125W SF₆=175 Ar=25 Sample6 Time=1min Power=125W SF₆=225 Ar= 25

mrI-8000: MW plasma

RF PLASMA Time= 1min Power= 125W CF4= 175sccm Ar= 25sccm **MW PLASMA** Time= 10min Power= 2000W SF6= 200sccm Ar= 50scc

Before treatment: thickness = 385-400nm; roughness = 2-3nm
After RF treatment : thickness = 373,69nm; roughness = 0,3-0,4 nm
After MW treatment : thickness = 379,14nm; roughness = 1-3 nm

mrI-7000: MW plasma

mrI-7000: 2000W 15min 200:50, SF6:Ar

MW PLASMA Time =10min Power =2000W SF6= 200sccm Ar =50sccm

- **Before treatment**: *thickness* = 326,89nm ; *roughness* = 0,265nm
- After treatment: *thickness* = 303,68nm; *roughness* = 6,399nm

PMMA

PMMA2_8	RF	125W 1min 175SF6 25Ar
PMMA2_11	RF	25W 2min 50SF6 200Ar
PMMA6_1	MW	2000W 5min 2005F6 50Ar

Basically no modification in the thickness and roughness after MW plasma, higher after RF treatment

inasmet

LITHO2006, Marseille June 2006 16

XPS results (In-depth profile)

Surface

Bulk

•In-depth spectra show no fluorine groups after few nanometers (~6nm)

c peak

XPS results (Functional groups)

Surface

Bulk

- CF₂ (291,4eV) and CF₃ (293,2eV) are the main groups responsible for the antiadhesion.
- The spectrum of mr-I 7000 has more intensity in this region. (Higher CA)

Imprinting trials (I)

Stamp	Plasma	Power (W)	Time (min)	SF ₆	Ar	Contact Angle
Silane (2 PDMS)	Untreated					aprox.81°
Si (1 PDMS)	MW	3000	10	200	50	128,11°
Si (2 PDMS)	MW	3000	10	200	50	129,66°
Si (1 PDMS)	RF	25	2	50	200	116,59°
Si	MW	3000	10	200	50	Aprox. 127°

All the tests were made under the same imprint conditions that were optimized previously by Tekniker:

- Temperature of 140°C
- Force of 50000N (≈63 bar)
- Embossing time of 5 minutes (total time of each imprint aprox. 20min).

Imprinting trials (II)

· Characteristics well defined and good filling of the patterns.

• The colour pattern of the residual layer shows no differences.

Imprinting trials (III)

• Treated samples do not adhere at all during demoulding, although some resist sticks on the walls of the stamp after several imprints.

- •The process was correct: filling correct, details well defined, ...
- •The treated polymer has the same etch rate as the untreted one.
- More regular pattern obtained with the Inasmet sample.

Conclusions

A short process for low pressure plasma treatment has been developed, which improves the pattern transfer and eliminates the manual demoulding needed after NIL processing

-This has been proved on several polymers

-A complete characterization of the surface of the different polymers has been performed

<u>Thank you for your</u> <u>attention</u>

The partial support of the EC-funded project NaPa (Contract no.NMP4-CT-2003-500120) is gratefully acknowledged