Welcome to Raith Nano World

Outline

Enabling new in-situ Nanofabrication Experiments using novel Electron- and Ion-Beam Lithography and Nanoengineering Workstations

Sven Bauerdick¹, Andre Linden¹, Michael Kahl¹, Lars Bruchhaus¹, <u>Frank Nouvertné¹</u>, Jacques Gierak²

 ¹Raith GmbH, Hauert 18, 44227 Dortmund, Germany phone +49 231 975 000 0 fax +49 231 975 000 5
 ²CNRS / LPN, 1, Route de Nozay, F-91460 Marcoussis

Taken from Raith best picture award 2005 image gallery

LITHO2006, Marseille, June 2006

Raith company profile

Raith company profile - Main activities

Nanolithography and Nanofabrication

for R&D and small batch production

Semiconductor Failure Analysis

and Reverse Engineering

OEM supply, development and fabrication

(UHV goniometer 2"-12", Beamblankers etc)

4

www.raith.com

Raith E-Beam-Lithography Portfolio

Electron Beam Lithography Attachments

ELPHY Quantum

ELPHY Plus

Universal Electron/Ion Beam Nano-Lithography System

> single field applications

Professional Electron/Ion Beam Nano-Lithography system

Advanced applications with max. stability

Compact LIS

Compact Laser Interferometer Stage for SEM / analytical systems

Stitching capabilities required

Raith E-Beam-Lithography Portfolio

Complete Electron Beam Lithography Systems

RAITH50

e LiNE

LaB₆ / W gun up to 2 inch wafer typ. cm² samples < 50 nm lines

EBL "standard" applications

TFE gun up to 4 inch wafer typ. cm² samples, chips < 20 nm lines (UHR)

UHR-Lithography and Nanoengineering Tool

RAITH150

TFE gun up to 8 inch wafer up to 6 inch mask < 20 nm lines (UHR)

Automated wafer (6", 8") exposure

R&D task: Interfacing nano devices to macroscopic world

System capabilities required to ...

- **§ Fabricate:** Use nature, lithography process or combination of both
- **§ Relocate:** Apply intelligent sample navigation, imaging
- § Modify: Employ shaping, adding, subtracting features and materials
- **§ Measure:** Analyze (topography, chemistry, dimensions ..), build contact to macroscopic measures (electrical, magn., ..)

... preferably in one single system only !

Applicational bandwidth in various scientific disciplines

eLINE product philosophy

Base applications

- E-beam lithography
- Inspection and process control
- Nano Metrology and intelligent Sample Navigation

PLUS: Advanced Nanotechnology / Nanoengineering applications

- E-beam induced surface modification
 - Electron beam induced material deposition (EBID) (also referred to as e-beam CVD)
 - Electron beam etching
- Nano probing / manipulation
 - In Situ electrical measurements on Nano Devices
 - In Situ manipulation of Nano Structures
- X-ray analytics

e_LiNE conceptual configuration top view

Collision free system integration

13

Applications – Ultra High Resolution

6nm lines exposed in HSQ resist at 10 keV only, D. Lucas, Raith inhouse

Test structure for PhC transmission measurement, Proximity Corrected F. Robin, ETH Zürich & Raith GmbH

BIDSilh Byzeformereted Dopses Distribution

15

www.raith.com

Electron Beam Induced Deposition

• various parameters: energy, beam current, substrate, dose, pressure, **FEB** precursoi deposit

Electron Beam Induced Deposition

"Nano-Chimney", A. Linden, Raith inhouse

Electron Beam Induced Deposition

EBID of SiO_x

Applications – Electron Beam Induced Deposition

SiO₂ sample with Au electrodes

SWCNTs on SiO₂ in co-operation with ETH Zürich

Random placement of SWCNTs (1.3 nm diameter) on SiO₂ sample

Detection of applicable SWCNTs with the help of an AFM

Сору

www.raith.com

Exposure results

4 point measurement array for conductivity measurement of deposited material by EBID

FIG. 1. AFM measurements of EBID rectangles used for conductivity tests => **down to 4.5-10**⁻³ Ω -**cm** ! FIG. 2. Electrical 4 point measurement of a 70 nm wide EBID rectangle exposed using a dwell time of 300 ms. From the 4 point results a barrier like characteristics due to the gold – EBID interface becomes apparent.

FIG. 1. SEM micrographs showing a 3 point wiring of CNTs fabricated by EBID. FIG. 2. Transistor characteristics of the CNT shown in Fig. 1 using EBID wiring, 3 point measurement and a back gate (200 nm SiO_2), source-drain current vs. voltage for various gate voltages

To be published in JVST B, S. Bauerdick et al.

"Wiring" of CNTs on SiO₂-sample (by metalorganic precursor deposition)

S. Bauerdick, Raith inhouse

www.raith.com

Nano-Manipulators (CAD top view)

www.raith.com

4 Nanomanipulators arranged

Nanomanipulator applications

 X
 EHT = 10.00 kV
 Gun Vacuum = 2.22e-009 mBar
 Signal A = InLens
 Date: 16 Jun 2005 Tex 55115

 Range = 3
 WD = 10 mm
 System Vacuum = 2.11e-006 mBar
 User Name = TRAINING
 ELTINE

EBID and Nanomanipulation

EBID and Nanomanipulation

EBID and manipulation of small nanostructures

A. Linden, Raith inhouse

EBID and Nanomanipulation

EBID / Nanomanipulator applications

EBID / NMT Movie

Further new EBL Functionality ...

Fixed Beam Moving Stage (FBMS) Mode

Fixed Beam Moving Stage Applications

Typical FBMS applications are extended (curved) paths

- with a length several mm or cm
- \bullet with a fixed width in the range of 20 nm to 20 μm
- where stitching errors are crucial for the performance of the device
- where a large number of stitching borders would result in long exposure times

FBMS Mode: Principles of Operation

Stage travels at constant speed along (curved) paths of any length and shape - with stationary beam

à Avoids stitchfield boundaries

à Effective for extended paths

A. Spot Mode

Application Example

www.raith.com

FBMS Application: Optical Waveguides

Minimum waveguide losses due to stitching-free FBMS writing!

FBMS Application: Electrical leads

Elongated electrical connections without points of interruption

www.raith.com

FBMS Applications: Zone plates

Raith new ionLiNE

ion beam Lithography, Nanofabrication and Engineering workstation

Introduction

ionLiNE:

ion beam *Li* thography, *N* anofabrication and *E* ngineering workstation

New class of instrument, no competition against well established Dual/Cross/Double beam systems !

Same platform as e_LiNE, all options possible ...

- Nano lithography tool architecture basis
- Advanced ion beam patterning capabilities
- Simple operation
- High level of system integration

Raith new *ionLiNE* - main applications

- Large area, UHR & low dose processes for ...
 - (J. Gierak, talk last monday afternoon)

- Selective epitaxy / self-assembly
- (Magn.) Thin film nanopatterning/-engineering
- Conductive material nanopatterning
- Surface functionalizaton
- Defect injection / implantation
- Nanopores
- 3D nanoengineering
- ion beam lithography

Selective epitaxial growth by surface "functionalization"

Expose low dose FIB in order to erase protective layer thus opening / "functionalizing" substrate surface for selective epitaxy

Apply MOCVD for GaAs growth

SEM images of MOCVD grown GaAs (SiNx protective layer)

MNE2005 Vienna, Kitslaar et. al.

Creating small magnetic domains

Taylor / create borders between physical active (here: magnetic) areas with low dose and UHR FIB

Creating small magnetic domains

Taylor / create borders between physical active (magnetic) areas with low dose UHR FIB

Distance between domain walls 1500 nm 750 nm

300 nm

50 nm

Faraday microscope image of pre-structured Pt/Co/Pt thin film

J. Appl. Phys. 95, 2614 (2004), V. Repain et al.

www.raith.com

Nanopatterning of conducting material

"Exposure" of cluster film "resist"

JVST B, Vol. 17, No. 6, Nov/Dec 1999

Apply FIB to destroy "protective" ligand shell in order to "weld" Au₅₅ nanoparticles, dissolve unexposed areas

Crystal defect injection and Au deposition

Expose HOPG with low dose FIB and induce surface defects serving as nucleation sites

Deposit Gold cluster which will preferentially nucleate at surface defects ("functionalization")

Deposited Au cluster on HOPG substrate

Appl. Surf. Sc., Vol. 226, 1-3, 2004

Thank you for your attention !

QUESTIONS, PLEASE !!!

50

... or like a cup of tea?

Raith new ionLiNE

... et bonne chance pour "les Bleus" contre les brésiliens !

FIB 3D demo pattern, S. Bauerdick, Raith inhouse

High level of system integration and control

EBID summary

ENABLING Advanced Nanotechnology

Ion Beam induced deposition (IBID) is widely used for semiconductor application.

However, Electron Beam induced deposition (EBID) is at the edge to get extremely popular due to following significant advantages:

- higher resolution by smaller probe size
- no gallium implantation / contamination
- no unwanted etching, damage of sensitive samples (Carbon Nanotubes, thin films)
- less contamination around the incident point (IBID requires intensive healing processes - Takai et al.)
- higher imaging resolution capability for Nano Engineering

Nanopores – Drilling

Raith