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All-optical switching in organic micro-cavities

Cavity pump-and-probe measurements
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Motivation

Why organic photonic crystal lasers?

Potentially cheap alternative to conventional edge-
emitting and VCSEL lasers

Broad gain spectrum

Flexible wavelength selection

Possibility to integrate into optical integrated circuits
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Distributed Feedback in a 2D Grating / Photonic Crystal

First order: Emission in-plane

Second order: Emission in-plane and/or directional vertical emission

1st order:

2nd order:
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Enhanced coupling in distributed feedback structures

SiO2: n=1.46
TiO2: n=2.5, t = 35nm
Poly: n=1.75, t = 250nm
For λ=490nm, a=295nm

Photonic crystal structures featuring a TiO2 layer enhancing the feedback
– Higher index contrast than with a SiO2 – polymer interface 
– Larger confinement in the waveguide
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Fabrication
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Ti in O2
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Fabrication

Depositing the TiO2 using sputtering 
Ti in O2
Depositing the Chrome etchmask
using sputtering
Spincoating PMMA and structuring 
using electron beam litho
Structuring the Cr mask using ion 
milling 
Etching the TiO2 using RIE
Spin-coating of the gain material
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Characterization – Chip layout and material properties
15 micron

Devices are photonic crystal 
pads of ~ 100µm x 100µm 
down to 15µm x 15µm

Easily deposited using spin-coating

Gain maximum around 494nm
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Lasing of 2D Photonic Crystals Structures
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Comparison with Band Structure Calculations
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Lasing Threshold of 2D Photonic Crystals Structures
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Interferometrically Defined Laser Structures 

Direct structuring of the gain material 
using Almaden Research Center’s
Laser Interferometer Lithography setup

Advantages:
Relatively easy fabrication

High index contrast 
air – polymer
Very regular periods

Disadvantages:
Low index of the waveguide 
material

Hard to control hole dimensions

n=
UV-II-HS resist, doped 
with Coumarin 6h : DCM. 
n=1.55

SiO2
n=1.46
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Stimulated emission from Interferometrically
Structured Samples
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Holographically fabricated structures

Resist doped with a laser dye is structured using holography – Rods of 
resist
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Lasing of Interferometrically Defined Structures
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Band-Diagram Theory & Experiment
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Summary

Distributed feedback through photonic crystals fabricated in TiO2 or 
in photo-resist

The lasing threshold can be lowered by incorporating a high index 
TiO2 layer

Leads to smaller devices

Next step: Electrically pumped organic lasers
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All-Optical Switch

Kerr effect:
n = n0 + n2 I

Q = ω/δω
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Fabrication Technology for Hybrid Cavities 

• Sputtering of dielectric λ/4  mirror stacks, 
for example Si/SiO2 (infrared), or  
TiO2/SiO2 (visible)

• spin coating, thermal deposition of organic
thin films

• Room temperature process works 
with most materials

Critical parameters: → Reproducible thickness of films
→ Quality of high-index films



Zurich Research Laboratory

Hybrid Photonic Nano-Structures for Lasing and Switching Applications © 2006 IBM Corporation

Outline

Organic photonic crystal lasers

Laser structures with TiO2 feedback layer

Interferometrically Defined Laser Structures

All-optical switching in organic micro-cavities

Cavity pump-and-probe measurements



Zurich Research Laboratory

Hybrid Photonic Nano-Structures for Lasing and Switching Applications © 2006 IBM Corporation

Cavity Pump & Probe, Concept

detector

delay
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Femtosecond Pump & Probe Setup
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Femto-Second Pump & Probe technique

Laser spectrum much wider than cavity transmission

Wavelength selected by 
monochromator

Cavity is always exposed to the same laser field!
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Femtosecond Pump & Probe, Example Signals

C60 cavity,
λC= 825.3 nm,  ∆λC= 2.0 nm,
∆λL≈ 2.0 nm,
Monochromator: δλ = 0.6 nm

Almost purely absorptive
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Numerical Simulations Confirm Experimental Behavior

differential
transmission

assume instantaneous 
nonlinearity:

only nonlinear
refraction n2 

only nonlinear
absorption α2
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Femtosecond Pump & Probe, Example Fits

C60, infrared C60, near infrared

mostly refractive mostly absorptive

Experiment

Simulation

Excellent agreement with simulation: ⇒ Nonlinearity in C60 is instantaneous
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All-Optical Switching: Figures of Merit

linear absorption nonlinear absorption

λα
InW 2 

2

2

n
T λα 

condition for bistability:

1T1W

intensity dependent: 
→ can be fulfilled through 
device optimization/intensity

independent of intensity:
→ a true material constraint!
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Obtained Material Parameters

(Infrared wavelength range 1300-1400nm)
Material n2 (cm2/TW) α2 (cm/GW) Figure of merit T
C60 0.06 0.8 1.6
C70 0.04 0.5 1.75
MEH-PPV 0.1 10 12
Si 0.015 1.45 12
C60-PU < 0.006 - -

so far:  C60 is the most promising material

“exotic” materials did not meet expectations
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Summary and Conclusion

Pump & probe measurements on Fabry-Perot micro-cavities

Reliable characterization of nonlinear materials for all-optical switching

Still missing: suitable nonlinear organic material

Without nonlinear materials with much larger n2 (10-100x) and good 
figure-of-merit T no integrated devices are feasible
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