

Zurich Research Laboratory

Hybrid Photonic Nano-Structures for Lasing and Switching Applications

Nikolaj Moll, Rik Harbers, Selim Jochim, Stephan Gulde, Rainer F. Mahrt and Bert J. Offrein

June 28, 2006

www.zurich.ibm.com

Optical Interconnect Hierarchy

	WAN, MAN-level Internet, GRID	Lab & Campus-I LAN, SA	System-leve evel intra-rack & AN rack-to-rack	el Board-level module-to- module	module-leve chip-to-chip	I Chip-level on-chip
Distances	Multi-km	10-2,000 m	0.3-1 m	0.1-0.3 m	5-100 mm	0.1-10 mm
# Lines	1s	1s-10s	100s	1000s	10,000s	100,000s
Technologies	Internet protocol, SONET, ATM	LAN/SAN Standards (Ethernet, InfiniBand, Fibre Channel)	Design-specific system buses, new standards (InfiniBand)	Design-specific, some standards (PCI/PCI-X/3GIO)	Design- specific	Design- specific
Optics Use	Ubiquitous since 80s or early 90s	Common since late 90s: Fiber standards in Enet, IB, FC	Coming in 2006-2010, with investment	Possibly cost-effective vs. copper in 2010-2015	Later	Even later, if ever
			The Next	Steps	The Fu	uture

Hybrid Photonic Nano-Structures for Lasing and Switching Applications

Outline

Organic photonic crystal lasers

Laser structures with TiO₂ feedback layer

Interferometrically Defined Laser Structures

All-optical switching in organic micro-cavities

Cavity pump-and-probe measurements

Outline

Organic photonic crystal lasers

Laser structures with TiO2 feedback layer

Interferometrically Defined Laser Structures

All-optical switching in organic micro-cavities

Cavity pump-and-probe measurements

Motivation

Why organic photonic crystal lasers?

- Potentially cheap alternative to conventional edgeemitting and VCSEL lasers
- Broad gain spectrum
- Flexible wavelength selection
- Possibility to integrate into optical integrated circuits

Distributed Feedback in a 2D Grating / Photonic Crystal

First order: Emission in-plane

Second order: Emission in-plane and/or *directional* vertical emission

IBM

Outline

Organic photonic crystal lasers

Laser structures with TiO2 feedback layer

Interferometrically Defined Laser Structures

- All-optical switching in organic micro-cavities
 - Cavity pump-and-probe measurements

Enhanced coupling in distributed feedback structures

Photonic crystal structures featuring a *TiO₂ layer* enhancing the feedback

- Higher index contrast than with a SiO₂ polymer interface
- Larger confinement in the waveguide

 Depositing the TiO₂ using sputtering Ti in O₂

- Depositing the TiO₂ using sputtering Ti in O₂
- Depositing the Chrome etchmask using sputtering

- Depositing the TiO₂ using sputtering Ti in O₂
- Depositing the Chrome etchmask using sputtering
- Spincoating PMMA and structuring using electron beam litho

- Depositing the TiO₂ using sputtering Ti in O₂
- Depositing the Chrome etchmask using sputtering
- Spincoating PMMA and structuring using electron beam litho
- Structuring the Cr mask using ion milling

- Depositing the TiO₂ using sputtering Ti in O₂
- Depositing the Chrome etchmask using sputtering
- Spincoating PMMA and structuring using electron beam litho
- Structuring the Cr mask using ion milling
- Etching the TiO₂ using RIE

- Depositing the TiO₂ using sputtering Ti in O₂
- Depositing the Chrome etchmask using sputtering
- Spincoating PMMA and structuring using electron beam litho
- Structuring the Cr mask using ion milling
- Etching the TiO₂ using RIE
- Spin-coating of the gain material

Characterization – Chip layout and material properties

 Devices are photonic crystal pads of ~ 100µm x 100µm down to 15µm x 15µm

Easily deposited using spin-coating

Gain maximum around 494nm

Lasing of 2D Photonic Crystals Structures

Comparison with Band Structure Calculations

Lasing Threshold of 2D Photonic Crystals Structures

Experimental band-diagram mapping below threshold

Outline

Organic photonic crystal lasers

Laser structures with TiO2 feedback layer

Interferometrically Defined Laser Structures

All-optical switching in organic micro-cavities

Cavity pump-and-probe measurements

Interferometrically Defined Laser Structures

- Direct structuring of the gain material using Almaden Research Center's Laser Interferometer Lithography setup
- Advantages:
 - Relatively easy fabrication
 - High index contrast air – polymer
 - \rightarrow Very regular periods
- Disadvantages:
 - Low index of the waveguide material
 - → Hard to control hole dimensions

Stimulated emission from Interferometrically Structured Samples

Holographically fabricated structures

Resist doped with a laser dye is structured using holography – Rods of resist

Lasing of Interferometrically Defined Structures

sample from 23/11/2004 (email John) site number "1

Band-Diagram Theory & Experiment

R.Harbers et al, APL, in press

Summary

- Distributed feedback through photonic crystals fabricated in TiO2 or in photo-resist
- The lasing threshold can be lowered by incorporating a high index TiO₂ layer
- Leads to smaller devices
- Next step: Electrically pumped organic lasers

Outline

Organic photonic crystal lasers

Laser structures with TiO2 feedback layer

Interferometrically Defined Laser Structures

All-optical switching in organic micro-cavities

Cavity pump-and-probe measurements

All-Optical Switch

Fabrication Technology for Hybrid Cavities

- Sputtering of dielectric $\lambda/4$ mirror stacks, for example Si/SiO₂ (infrared), or TiO₂/SiO₂ (visible)
- spin coating, thermal deposition of organic thin films
- Room temperature process works with most materials

Critical parameters: \rightarrow Reproducible thickness of films \rightarrow Quality of high-index films

Outline

Organic photonic crystal lasers

Laser structures with TiO2 feedback layer

Interferometrically Defined Laser Structures

All-optical switching in organic micro-cavities

Cavity pump-and-probe measurements

Cavity Pump & Probe, Concept

Femtosecond Pump & Probe Setup

Femto-Second Pump & Probe technique

Laser spectrum much wider than cavity transmission

Cavity is always exposed to the same laser field!

Femtosecond Pump & Probe, Example Signals

Numerical Simulations Confirm Experimental Behavior

differential transmission

1.29 (a) 0.6 1.28 (%) 0.4 1.27 5 wavelength λ_0 (μ m) differential transmission 0.2 1.26 -1.5 -1 -0.5 0.5 1.5 0 1 0 1.29 - (b) -0.2 1.28 -0.4 1.27 -0.6 1.26 -1.5 -1 -0.5 0.5 1.5 0 1 delay τ (ps)

assume instantaneous nonlinearity:

only nonlinear refraction n_2

only nonlinear absorption α_2

Femtosecond Pump & Probe, Example Fits

Excellent agreement with simulation: \Rightarrow Nonlinearity in C₆₀ is instantaneous

All-Optical Switching: Figures of Merit

linear absorption

nonlinear absorption

$$W \quad \frac{n_2 I}{\alpha \ \lambda} \qquad \qquad T \quad \frac{\alpha_2 \lambda}{n_2}$$

condition for bistability:

 $W \quad 1 \qquad \qquad T \quad 1$

intensity dependent: \rightarrow can be fulfilled through device optimization/intensity

independent of intensity: \rightarrow a true material constraint!

Obtained Material Parameters

(Infrared wavelength range 1300-1400nm)

Material	n₂ (cm²/TW)	α_2 (cm/GW)	Figure of merit T
C ₆₀	0.06	0.8	1.6
C ₇₀	0.04	0.5	1.75
MEH-PPV	0.1	10	12
Si	0.015	1.45	12
C ₆₀ -PU	< 0.006	-	-

so far: C_{60} is the most promising material

"exotic" materials did not meet expectations

Summary and Conclusion

- Pump & probe measurements on Fabry-Perot micro-cavities
- Reliable characterization of nonlinear materials for all-optical switching
- Still missing: suitable nonlinear organic material
- Without nonlinear materials with much larger n₂ (10-100x) and good figure-of-merit T no integrated devices are feasible

Zurich Research Laboratory

www.zurich.ibm.com