New Fabrication Methods for Photonics

J. Ahopelto VTT Micro and Nanoelectronics Espoo, Finland

Outline

- Integrated Project NaPa
- Examples of fabrication methods
- Examples of applications
- Summary

NaPa session

Thursday and Friday, June 29-30

European dimension

- FP6 Integrated Project
- NMP Priority
- 35 groups from 14 countries
- Coordinator: J. Ahopelto, VTT
- March 2004- February 2008
- Volume 31 M€
- 1/3 industrial partners
- 1/3 research institutes
- 1/3 universities

www.phantomsnet.net/NAPA/index.php

Emerging nanopatterning methods

Aim

Examples of Fabrication Methods

Thermal Nanoimprinting

UV Nanoimprinting

Soft lithography

H. Wolf et al., IBM Research

Large Area Parallel NIL

dry etching

NIL on 200 mm wafer

C. Gourgon et al., CNRS

Step&Stamp nanoimprinting lithography I

T. Haatainen et al., VTT 2000

Step&Stamp nanoimprinting lithography II

NPS 300 Nano imPrinting Stepper

- Thermal + UV nanoimprinting
- Up to 300 mm wafers
- Sub-20 nm features
- 250 nm overlay accuracy
- Automatic alignment
- C2C loading available

~10 nm holes in polymer

T. Haatainen et al., VTT 2001

Stamp fabrication for Roll-to-Roll imprinting

Roll-to-Roll imprinting I

Nanoimprinting
Flexo
Gravure
Laminating
Speed up to 20

T. Mäkelä et al., VTT

Web: Cellulose acetate, width 50 mm Speed 1 m/min Temperature 105 °C Pressure 5 MPa Also: PANI-DBSA, conducting

polymer

m/min

Roll-to-Roll imprinting II

Roll-to-Roll imprinted lines in cellulose acetate

P. Majander et al., VTT

SEM and AFM image of Ni stamp with 100 nm wide and 170 nm high ridges

AFM image of imprinted trench

3-dimensional structures I

3D stamps

3D imprints

3-dimensional structures II

M. Tormen et al. TASC

Reverse nanoimprinting for 3D structures

Imprinting of conducting polyaniline at RT

T. Mäkelä et al., VTT 2004

Assembly and transfer of ordered clusters

Assembly

Convective

Currective assembly

Currective asse

<u>Figure 1.</u> Self assembly of nanoparticles: Polystyrene beads with 500 nm diameter were assembled from aqueous suspension in a meniscus that slowly moved over a patterned silicone elastomer template.

Transfer to another substrate b a 5 µm l µm

Polystyrene beads transferred onto silicon substrate

H. Wolf et al., IBM Zürich Research Laboratory

Nanodispensing

Apertured AFM probe as a miniaturized fountain pen for nanoscale dispensing (NADIS) of liquids

A. Meister et al. CSem centre suisse d'électronique et de microtechnique

BioPlume

Loading by electrowetting

L. Nicu et al., CNRS/LAAS

b

Examples of Applications

Gratings

800 nm pitch

J. Seekamp et al., Univ. Wuppertal

Interdigitated fingers by nanoimprinting

SEM image of silicon stamp patterned using ebeam lithography
Ridge width 150-550 nm
Anti-adhesive treatment •Imprint in 75K PMMA •T=170 °C, p=60 bar, t=5min Cross-section after removing the residual layer

N. Kehagias et al., TNI

Step&Stamp Nanoimprinting

Interdigitated fingers with different workfunctions

Replication of photonic crystals by soft UV NIL

Pattern transferred into PMMA

Ni lift-off and dry etching

PhC in 260 nm thick SOI

M. Belotti et al., CNRS

DBR Laser Diode

Side mode supression ~40 dB

Cr grating by imprinting and lift-off, ~270 nm period, 85 nm linewidth

CW operation at RT

Emission wavelength vs. grating period

R. Werner et al., Nanoplus GmbH

Bio-chip with different functions integrated

One imprint step into Topas[®]

A. Kristensen et al., MIC/ DTU

3-D patterning for cell implants

The embossed sheet rolled up into a spiral. The cells are aligned by the grooves along the direction of the axis of the 'Swiss Roll'.

C. Wilkinson et al., Univ. Glasgow

Functionalised polymers

PS

Luminescent CdS NCs in PMMA

CdSe@ZnS NCs in TOPAS: imprinted laser ridges (in collaboration with MIC)

M Curri et al., CNR-IPCF

Summary

- Emerging patterning/fabrication methods are being developed in NaPa:
 - Nanoimprinting (thermal/UV)
 - Soft lithography
 - Self-assembly
 - Nanodispensing
 - Nanostenciling
 - Materials
 - Tools
 - Simulation tools
- New applications

Acknowledgements

NaPa consortium

European Commission (Grant NMP4-CT-2003-500120)

[Molecular Imprints Inc.]

Step&Stamp Nanoimprinting (VTT)

1

Sequential Step&Stamp imprinting

Nanoimprinting lithography

Thermal NIL

NIL variants

C. Gourgon, CRNS

Step&Stamp Nanoimprinting (VTT)

PBG structures: example

- Mix-and-match stamp for a Y branch structure with a photonic crystal in the upper arm
- Imprint made into 400 nm thick PMMA on SOI

MEMS based nanopatterning

Nanostencil

NADIS

Nanodispensing II

Cantilevers with microfluidic channels

A. Meister et al. CSem centre suisse d'électronique et de microtechnique

Aperture at the tip apex realized by FIB

Soft lithography

