

Advanced Laser Gratings: Fabrication and Assessment in the Production Environment

Rosie Cush

Co-workers: Roger Gibbs, Dave Harvey, David Inder, Tim Kennedy, Andy Nash, Ian Scott

Doug Reid, Ian Davies, Andrew Brewis, Alan Webb, Xinyi Wang

Caswell InP Wafer Fab 57k sq.ft. (5,300 m2) clean room 3" processing – increased throughput, high yields, high process reliability Equipment capacity 5500 3" InP wafers/month Rebuild value >\$500M

Brokham

Summary

- Laser grating fabrication requires nanometre process control

 Periodic nature of structures gives rise to different control requirements from discrete nanostructures
- Holographic techniques give speed and continuous
 parameter control for fixed grating designs
- E-beam techniques give flexibility and adaptability for complex grating designs and rapid prototyping
- Non destructive assessment techniques (AFM, diffraction measurement) essential for tight process control and high yields
- Nanometre scale grating fabrication, using holography or e-beam exposure, is a practical production technique