

Extrem Ultra-Violet Lithography

"More Moore" MEDEA+

Christophe Constancias

www-leti.cea.fr

www-leti.cea.fr

Extrem Ultra-Violet Lithography

I/ Lithography : State of the Art II/ EUV Lithography : Why? III/ EUVL at CEA-LETI

Outline

- Pushing to 22nm node

- Mask defect reduction

- Extrem UV : $5 \text{ nm} \rightarrow 40 \text{ nm}$ (250 eV \rightarrow 30 eV)
- EUV Lithography : $\lambda = 13.5 \text{ nm}$
- All materials absorb EUV light
 - $EUVL \Rightarrow$ Vacuum
 - Reflective optics and mask

EUV Lithography : Why?

R [nm] and	λ = 248 nm	λ= 193 nm	λ= 157 nm	EUV @ λ= 13.5 nm
DOF	NA=0.7	NA=0.75	NA=0.8	NA=0.1 NA=0.25
k 06	213 nm	154 nm	118 nm	81 nm 32 nm
K ₁ = 0.0	304 nm	206 nm	147 nm	810 nm 130 nm
k – 0 5	177 nm	129 nm	98 nm	
k₁= 0.3	253 nm	172 nm	123 nm	<i>Hyp</i> : $k_1 = k_2$
k₁= 0.5	159 nm	116 nm	88 nm	$R = k_1 \lambda / NA$
	228 nm	154 nm	110 nm	$DOF = k_2 \lambda / NA^2$
k₁= 0.4	142 nm	103 nm	79 nm	-
	202 nm	137 nm	98 nm	

Note : Production confort with $k_1 \ge 0.6$ & DOF ≥ 500 nm

EUV Tool : Optic requirements

4X Projection stepper α tool developed by ASML

• Mirror Spec for 70nm CD

- Aberration
 - Surface figure < 0.2nm RMS
- Flare (parasitic light)
 - Mid spatial freq. rough. < 0.15nm RMS
- Reflectivity loss
 - High spatial freq rough < 0.10 nm RMS
- Highest reflectivity (70% / mirror)
- At least 6 mirrors for α tool !
- EUV Source
 - High wafer throughput : 120Wafer/h
 ⇒120W EUV light source
 - Life time > 1 year

EUV Mirror : Multilayer interferential reflector

- Bragg mirrors: constructive interference
 in backward direction
- Periodic stack of heavy and light layers.
- Best couple of materials ⇔
 - maximum index gap
 - minimum absorption

Mo/Si is the best couple beeing:

•non toxic

•not too expensive

• Typically : 40 x Mo(28Å)/Si(41.5Å) R _{theory} = 74% @13.5nm & $\theta = 6^{\circ}$

R _{Best experimental} $\approx 69\%$

C. Constancias

40 Mo/Si

Among the different specifications to meet, two are particularly demanding:

- $ightarrow R_{EUV}$: high and stable.
- Selectivity » : NO defect, even small ones (25 nm !!) Defect density < 10⁻³/cm² (Ø defect / mask)

C. Constancias

Extrem Ultra-Violet Lithography

I/ Lithography : State of the Art

II/ EUV Lithography : Why? III/ EUVL at CEA-LETI

Outline

- Pushing to 22nm node

- Mask defect reduction

-

Pushing to 22nm node

- EUV binary masks:
 - Manufacturing OK

> However, they might be limited to the 32 nm node.

Res.=	k ₁ .	λ/	/NA	
-------	------------------	----	-----	--

		Res.	k ₁	Node
		(nm)		achievable
<u>NA=</u> 0.25	Binary mask	27- 54	0.5-1	32
λ=13.5 nm				
	Phase Shift Mask	14 -27	0.25-0.5	22

More Moore : evaluation of PSM design and technological issues.

Mask for low k1: Phase Shift Mask (PSM)

Use phase modulation on the mask allows Resolution improved by a factor x 2

Absorber

Cr-less Phase Edge Lithography (CPL or Hard PSM) 100% Reflexion, 180° Phase MoSi etching

Absorber

C. Constancias

Alternating PSM (Alt-PSM) 0% Reflexion, 180°Phase MoSi etching

Litho2006 26-30 June Marseille

EUV reflective mask : reducing k₁

C. Constancias

Litho2006 26-30 June Marseille

Phase shift tolerance : $\Delta \Phi = 180 \pm 5^{\circ}$

 λ =193nm Transmissive mask

$$\phi = \frac{2\pi}{\lambda} h(n-1) \qquad \qquad \delta\phi = \pm 5^{\circ} \Longrightarrow \begin{cases} \Delta h \le 6nm \\ \Delta \lambda \le 5.4nm \end{cases}$$

 λ =13.5nm Reflective mask

$$\phi = \frac{2\pi}{\lambda} \frac{2h}{\cos \theta_i} \quad \delta \phi = \pm 5^\circ \quad \Rightarrow \begin{cases} \Delta h \le 2\mathring{A} & \to \text{Etch depth control \& uniformity} \\ \Delta \lambda \le 4\mathring{A} & \to \text{Poor tolerance on wavelength} \end{cases}$$

 $\Rightarrow Technological challenge in terms of etching$ control and uniformity:An Etch Stop Layer is compulsory.

Phase Shift mechanism understanding

•Phase shift due to

- step height
- Embedded materials

$$\Delta \phi_1 \neq \Delta \phi_2 \neq \Delta \phi_3$$

Samples type 1/ provided and measured

@13.5nm at PSI with partner IOTA-CNRS

Samples type 2/ 3/

nearly achieved Measurements to be performed

Technological development : MoSi etching

- Precise control of etch depth
- Uniformity
- - Sidewall angle of 88°

C. Constancias

EUV Interferometer measurement

•Regular fringes: \Rightarrow Good etching uniformity on a few mm²

•Deduced average Phase shift at wavelength (13.5nm): => $\Delta \Phi = 0.685 \pm 0.06\lambda$

• $\Delta \Phi$ is very sensitive to energy dispersion.

« Real life »

- Difficult to control the phase shift on a real EUV tool.

$\Delta \Phi = \mathbf{k} + \mathbf{0.32}\lambda \pm 0.02\lambda = 115^{\circ}$

h=13MoSi

λ=13.33nm (93eV)

Extrem Ultra-Violet Lithography

I/ Lithography : State of the Art

II/ EUV Lithography : Why?

III/ EUVL at CEA-LETI

Outline

- Pushing to 22nm node

- Mask defect reduction

6

www-leti.cea.fr

Critical defects for EUV

- Definition: any perturbation of the multilayer mirror which is printed in the resist.
- The critical size of defects for EUV depends on:
 - The printability of defect in resist
 - The node which is targeted.
- Two kinds of defects:
 - Nodule defects (also called :decorated)
 - Their growth start from the substrate (initial seed) and result from the coating deposition.
 - Process added defects:
 - Particles, flakes which are transported inside the deposition chamber.

How to avoid nodule growth?

Different ways are currently investigated :

>From the beginning by optimizing :

- the substrate cleaning
- the deposition geometry

After or during nodule growth by
 ion smoothing of nodule defect.
 Other innovative mitigation process

(Addressed in More Moore)

Use of an ion beam to deflect particle

Plasma screen concept*:

Use of an additional ion beam to drag away from coating the particles generated inside the IBS deposition chamber

Leti Example of screening results

- 80-100 nm : defectivity divided by 50
- 100-200 nm : defectivity divided by 5
- •>200: still a few added defects generated by the screen.

Innovative mitigation technique

Principle: to reverse the Mo/Si stack to leave the largest part of nodule far from mask surface

Simulation:Reverse Technology defect impact

Reflected intensity standard incidence

Reflected intensity reverse incidence

These simulations show that apparent size of the defect is smaller in reverse incidence compared to the standard incidence.

C. Constancias

Reverse technology : feasability

eti

2005

Programmed defect layout : <u>various</u> defect sizes (width&height)

Defect reduction innovation action

EUVL News / Summary

- EUV Lithography competes to the 32nm node and below
 - α –Tool (0.25 NA) developped by **ASML** available Q2 2006
 - 32nm dense line demonstrated **ASML** (resist limitation)
- 40-50 W Source power achieved @IF
- 22nm node might need PSM mask
 - 70nm dense line printed with CPL EUV mask by AMD 2005
- Defect printability due to very small substrate defects could be a serious concern.
 - Best 2005 0.025def/cm²@80nm 0.9def/cm²@70nm
 - 2008 Goal : 0.01def/cm²@40nm
- Cleaning and coating techniques are not suitable: more innovation is required.
 - These topics are addressed in More Moore

Critical Technical Issues for EUVL

According 2005 EUVL Symposium

Top 3 Critical Issues 2005

- 1. Resist resolution, sensitivity Line Edge Roughness
- 2. Source/ Collector liftime
- 3. Availabiity of defect free mask
- 4. Source Power

2004 Rank 3 2

1

eti

Thank you for your Attention

EUV Team at CEA-Leti

S. Tedesco; J.Y Robic; M. Richard; R. Tiron; C. de Nadaï; E. Quesnel; V. Muffato; J. Hue; C. Vannufel; J. Simon; P. Michallon; B. Dal'zotto; J. Foucher; C. Sourd; J. Chiaroni; R. Blanc; J. Vallejo

CNRS – IOTA EUV Interferometer

D.Joyeux; P. Pichon; D.Phalippou; N. de Oliveira

SPIE 2006 : Phase Shift Mask for EUV Lithography, 6151-69 V. 2 (p.1 of 12)

