LITHO 2006, Marseille

Integration of optofluidic functionalities

J. C. Galas, Q. Kou, C. Péroz, J. Shi, and <u>Y. Chen</u>

Laboratoire de Photonique et de Nanostructures, CNRS, Marcoussis, France École Normale Supérieure, Paris, France

Technologies

Yong.chen@ens.fr

Outline

I. Microfluidics

II. Optofluidic functionalities

- Liquid core wave guides
- □ Integrated optical components
- □ Microfluidic dye lasers
- □ Inter cavity absorption
- **III.** Conclusions

I. Microfluidics

Importance of microfluidics

From capillary electrophoresis to lab-on a chip micro-systems

Art of control and manipulation of micro-flow, cells, and bio-molecules

Fast prototyping by soft lithography

Single layer device

G.W. Whitesides, Harvard

mold flat substrate

S. Quake, CALTECH

Double layer device

Valves

Comparison to Silicon MEMS technology

Micro pump

Connections

Typical workflow

Device example: Micro reactor

Micro injecter

V. Studer et al, µTAS 04, p375, Analyst 129, 944 (05)

Device for AC kinetic pumping

Device example: (Rare) cell sorter

<u>Challenge</u> :

Sorting one cell among ten millions during one hour.

<u>Approach</u> : A two stage design for rapid & precise sorting

High throughput sorterSingle cell manipulationV. Studer et al, Microelectron. Eng. 73-74, 852 (05)

II. Optofluidic Functionalities

Liquid core - PDMS cladding wave guide

Liquid core wave guide

 n_2 n_0 n_1 θ_c n_2 n_2

 $NA = n_0 \sin \theta_m = (n_1^2 - n_2^2)^{1/2}$

Optic-fiber coupling

 $n_{PDMS} = 1.42, \quad n_{oil} = 1.52$

Q. Kou et al, LPN, MNE (2003)

Optical components

Small size and re configurable

Micro lenses

Micro coupler and beam splitter

Micro prism

With liquid

Without liquid

Liquid-core liquid cladding wave guide

Vezenov, Harvard, Appl. Phys. Lett. 2005

Microfluidic dye laser

Kou et al, LPN/CNRS SPIE 5641-33 (2004)

Close loop & ring resonator lasers

J.C. Galas et al, Appl. Phys. Lett. 2005

Collinear dual-color laser

UV nanoimprint lithography

Imprinted and etched resists

3rd order Bragg grating etched in quartz

2nd order Bragg gratings laser

Threshold pump fluence 12 μJ/mm².

Bragg grating of 400 nm pitch grating, obtained by soft UV nanoimprint and etched into a quartz plate

C. Péroz et al, LPN, MNE (2006)

Other dye laser configurations

Vertical microfluidic laser

B Helbo et al., Denmark, 2003

Li et al , Optics Express, Feb 2006

Liquid wave guide laser

D. V. Vezenov et al., Harvard, 2005

Soft lithography defined 15th order DBR laser

Intra cavity laser absorption

 $\gamma = \alpha(v)IC = E$

Light extinction:
$$I(v) = I_0(v)[F] e^{-\alpha(v)Ev}$$

 $F = \frac{1}{(g_{0\times Lrh6G} - T_{0\times}(\alpha \times L \times C_{1+T}))}$
 $I(v) = I_0(v)[F] e^{-\alpha(v)Ev}$
 $I(v) = I_0(v)[F] e^{$

J.C. Galas et al, to be published

5.0x10⁻⁵

Concentration (mol/L)

1.0x10⁻⁴

Enhancement factor

F~15

0.4

0.2

0.0

 $g_{\scriptscriptstyle 0 imes} L_{{
m rh}6G}$

Conclusions

- **Optofluidic functionalities** can be easily obtained on chip.
- Dye layer emissions can be observed with different device configurations.
- Intra cavity absorption largely enhances the detection sensibility of chemical solutions.
- Intra cavity absorption can also be used for sensitive cell analyses.
- Other functionalities can be obtained on the same chip for a very broad application field.