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The typical current-voltage relationship predicted by basic thermionic emission modeling, namely, j = A*T2 

exp (-qb /kT) [exp (qV/kT)-1], (qb the junction barrier, V the applied voltage, and A* Richardson’s 

constant) does not include specific carrier transport mechanisms that occur across the 

graphene/semiconductor Schottky junction (G/n-Si junction). In a reverse biased G/n-Si junction, 

graphene’s fermi level shifts upwards relative to the semiconductor’s fermi level, through the reversely 

applied voltage though the junction. Reverse current (G to Si side) is probable via thermionic escape. In 

this communication we propose a way of re-writing, from first principles, the formula for thermionic carrier 

transport across an ideal Schottky G/n-Si junction under reverse bias, by considering two groups of 

migrating carriers: those carriers that surmount over and tunnel through the junction barrier spike qb. We 

model carrier escape in a Landauer scheme, by expressing the current over or through the Schottky junction 

spike, namely,   )()()()()()/( EtEvEfffEDdEtqJ Sgg
, where q is the electronic charge, 

tg is the thickness of the graphene layer D(E) is graphene’s linear DOS (density of states), fg,S are the Fermi-

Dirac carrier probability functions, v(E) is the thermal electron velocity, and t(E) is the transmission 

probability over (=1) and through (less than 1) the barrier. Starting from the last integral, we model 

migrating carriers through two transport mechanisms (a) thermionic escape (TE) over the junction barrier 

and (b) thermionic field emission (TFE) through the barrier. In the first case, electrons are modeled as 

carriers surmounting the junction barrier with maximum probability (|t| = 1), and in the latter, carriers are 

modeled as tunneling through the junction barrier with a non-zero probability |t| = exp (-qb/Eoo). The 

denominator in the probability exponential depends on semiconductor donor doping Nd according to

sdoo mNqE */)2/(  , where m* is the semiconductor’s effective mass and s is its dielectric 

constant. We calculate both TE and TFE currents explicitly: (1) TE current is explicitly derived as JTE = 

A1* T1.5 exp (-qb/kT) [1-exp (-qV/kT)] and (2) TFE current: JTFE = A2* T2.5 exp (-qb/nkT) [1-exp (-

qV/kT)], where n is the junction quality factor directly dependent on the tunneling probability |t| through 

the potential spike at the junction at energy values under qb; the parameter n can be found explicitly as n 

=  Nd
1/2, with an appropriate constant (m3/2) related to carrier effective mass, semiconductor 

dielectric constant and the kT parameter. For total current, we the sum of TE and TFE components will 

suffice: J = [A1*T3/2 exp (-qb/kT) +A2*T5/2 exp (-qb/nkT)] (1-exp (-qV/kT)]. We see from this last result, 

that temperature dependence is smeared between concurrent T1.5 and T2.5 dependences respectively, and 

two new Richardson-like constants A1*, and A2*, containing the thickness of the 2-D graphene layer; 

different Richardson’s constants appear because of the graphene layer replacing the metal of a traditional 

Schottky junction. The quality factor n in the second exponential is related to the semiconductor’s donor 

doping level as Nd
1/2; with values expected to be between 0.10 and 0.316 for semiconductor doping levels 

from Nd = 1016 to 1017 cm-3 respectively. Alternatively, the total current can also be written in a more general 

form: J = A1*T3/2 exp (-qb/kT) [1+ (3/2) (kT/qb) exp (-qb/mkT)] (1-exp (-qV/kT)]; with kT<< qb, and 

m a new version of the original factor m = n/ (n-1).  

 

  




