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Emergent Dirac fermions in graphene
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More Is Different

Broken symmetry and the nature of
the hierarchical structure of science.

P. W. Anderson

The reductionist hypothesis may still ~planation of phenomena in terms of
be a topic for controversy among phi- known fundamcn‘zal laws. As always, dis-
losophers, but among the great majority tinctions of this kind are not unambiguous,

. L P/ but they are clear in most cases. Solid
of active scientists I think it is accepted  giate physics, plasma physics, and perhaps

What differs graphene from a collection of carbon atoms?
@ The valley pseusospin ( = fermion doubling)
@ Time-reversal symmetry breaking at zero magnetic field
@ Pseudodiffusive charge transport and more ...

A.Rycerz Nonstandard quantum interference




Introduction

Emergent fermions in graphene
Valleytronics in graphene
Breaking the valley degeneracy

Emergent Dirac fermions and valleys

Tight-binding Hamiltonian:

IHTBA*Z[L] |I <j|+hC],
(i)

ti(A) = —z‘exp{ f’A dr}

t~3eV,and &y = h/e.

Envelope wavefunction:

v(r) = (W) KT+ (‘Z’%) ek,

B
For K-point and A = 0O:

hve 0 Ox —i0y w) (W)
i ax"‘iay 0 (0 (0 ’

with ve=3ta/ha~ 106 m/s, a= 0.246 nm.

A compact form: HyW = EV, with Hy = vro - p, o = (ox, 0y),
and p = —ih(0x,0y). For B#0: p — p— £
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Valleytronics in graphene

3 > i
‘I’w ‘/ 'Recher et al,
i PRB 76, 235404
V

(2007)

©.0.5 = ko(Ro—Ri)
AR, PRB 81, 121404(R) (2010);
Khatibi et al., PRB 88, 195426 (2013).

Related: Fujita et al., APL 97, 043508 (2010) 136806 (2011)
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Breaking the valley degeneracy

@ Lowest mode in constriction w/zigzag edges, domain walls in
BLG, etc. [ = not this talk ... ]

@ Aharonov-Bohm rings [ =
Recher, Trauzettel, AR et al.,
PRB 76, 235404 (2007) ]

Related works: 4 \g}
Xu et al., Sci. Rep. 5, 8963 (2015); Culcer et al., PRL 108 126804 (2012); Palyi and
Burkard, PRL 106 086801 (2011); Recher et al., PRB 79, 085407 (2009);-...
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The condensed-matter two-slit experiment

(b} 2

Two-slit experiment. Quantum interference between two trajectories (a) results in oscillatory
d d

p e of the propagation probability on the phase shift between two amplitudes
((b), plotted for Py /P; = 6).

= In metallic (or semiconducting) Aharonov-Bohm rings one
cannot neglect looped trajectories. This may effect the
oscillation period [ Sharvin and Sharvin, JETP Lett. 34, 272
(1981); Webb et al., PRL 54, 2696 (1985). ]

= Fourier analysis necessary to determine the character of
interference in a given A-B ring.

[ Image from: Nazarov and Blanter, Quantum Transport: Introduction to Nanoscience,
Cambridge University Press (Cambridge, 2009). ]
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Aharonov-Bohm effect in graphene rings
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= In graphene A-B rings, experiments show oscillations with
the standard ¢y = h/e period, and the magnitude AG x G
(and also AG x T~'/2), indicating the tunneling transport
regime [ Russo et al., PRB 77, 085413 (2008); Stampfer et al.,
Int. . Mod. Phys. 23, 2647 (2009). ]
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A-B effect and valley polarization

AR, Acta Phys. Polon. A 115, 322 (2009).

Related works: Zarenia et al.,, PRB 81, 045431 (2010); Wurm et al.,

Semicond. Sci. Technol. 25, 034003 (2010); Schelter et al., PRB 81,
195441 (2010).
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A-B effect and valley polarization

power spectrum
power spectrum

0 1 2 3 B 4 5 6 7
frequency (tbgl) frequency (@El)

[ AR, Acta Phys. Polon. A 115, 322 (2009) ]

= Tunneling regime (AG « G) reproduced in simulations when
disorder taken into account [Wurm et al. (2010)].

= Frequency doubling upon inversion of valley polarity (in one
constriction only) not yet observed.
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The Corbino disk in graphene

Bottom left: AR, PRB 81, 121404(R) (2010). Right: Peters et al., APL
104, 203109 (2014).
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Magnetoconductance of the Corbino disk in MLG

By /Py kol Ro—Ri)
@ Periodic, approximately sinusoidal, conductance oscillations
[ with the period &g = 2(h/e)L, L = In(R,/R,) ] appear if
|Pg| < ® = —(2h/e) In(koR,), where ¢4 = 7B(R? — R?) and
ko = |EF|/(hvE). / =Similarly — for higher LLs. /
@ Conductance for the Dirac point (ko — 0) reads
G = Guair + Yy GmCOS(2Trmd4/®g), Where Gy = 200/ L,
Gm = 47%(—)"mgo /(L2 sinh(72m/ L)), and go = 4€?/h.

[ AR, PRB 81, 121404(R) (2010); fig-s are for R, /R, = 10. ]
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Trigonal warping in bilayer graphene

@ Landauer conductivity
[Snyman & Beenakker,
2007], v3 =74 =0:

Obilayer — GL/ W= 209

@ Kubo conductivity [Cserti
et al., 2007], v3 # 0:

Obilayer = 6o (!)

@ Experiment: [Mayorov et
al., 201 1] Obilayer =2 50’0.
[ 00 = (4/7)€?/h — universal
conductivity of a monolayer. |
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Rep. Prog. Phys. 76 (2013) 056503 E McCann and M Koshino

Table 1. Values (in eV) of the SWM model parameters [64—67] determined experimentally. Numbers in parentheses indicate estimated
accuracy of the final digit(s). The energy difference between dimer and non-dimer sites in the bilayer is A’ = A — y, + y5. Note that
next-nearest layer parameters y, and ys are not present in bilayer graphene.

Parameter ~ Graphite [67] Bilayer [76]  Bilayer [55] Bilayer [56] Bilayer [80]  Trilayer [82]

Yo 3.16(5) 29 3.00 — 3.16(3) 310
” 039(1) 0.30 0.40(1) 0.404(10)  0.381(3) 0.39°

»n —0.0202) — — — — —0.028(4)
s 0.315(15) 0.3¢ - 0315

Va 0.044(24)  0.12 0.15(4) — 0.14(3) 0.041(10)
¥s 0.038(5) — — — — 0.05(2)

A —0.008(2) — 0.018(3) 0.018(2) 0.022(3) —0.03(2)
A 0.050(6) — 0.018(3) 0.018(2) 0.022(3) 0.046(10)

2 This parameter was not determined by the given experiment, the value quoted was taken from previous
literature.

[55] Zhang et al., Phys. Rev. B 78, 235408 (2008).

[56] Li et al., Phys. Rev. Lett. 102, 037403 (2009).

[67] Dresselhaus & Dresselhaus, Adv. Phys. 51, 1 (2002).
[76] Malard et al., Phys. Rev. B 76, 201401(R) (2007).
[80] Kuzmenko et al., Phys. Rev. B 80, 165406 (2009).
[82] Taychatanapat et al., Nature Phys. 7, 621 (2011).

= Novel phenomena governed solely by v3 VERY desired!
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Fig. 1: (Colour o

for two-dime 0
oebit. (dashed I -
right: ©
‘.ij:- of th )( -

i Fig. 3: (Colour on-line) Minimal conduetivity of an unbiased
Grzegorz Rut & AR: graphene bilayer as a function of the sample length L (speci-
= PRB 89, 045421 (201 4) fied in units of [; = hve/t) ~ 1.60nm). Different datapoints
= EPL 107, 47005 (201 4) correspond to different values of the next-nearest neighbor in-

terlayer hopping: t' = 0.1eV (A), 0.2eV (), and 0.3V (@),
[ Notation: t/ = ~3 ]

A.Rycerz tandard quantum



Graphene disks

The Corbino disk in graphene
Trigonal warping in bilayer graphene
Magnetotransport in BLG disks

Magnetoconductance of BLG disk: t'=0

: . o =~ -
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®p = B(R? — R?),
®o =2(h/e)In(R,/Ry),
8e? 1
GRiE = 2Gi® = 5 e

h In(Ry/R)’
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= Oscillations magnitude at
the Dirac point:

0 < AGPLS < 2AGMS,

= The oscillations vanish
(AGPLS = 0) for

R,/R ~ [Rit, /(2hvE)]*/P,
withp=1,3,5,....
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Magnetotransport in BLG disk: t'+£0
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= The excess conductance decays as Gais(t') — Gairr(0) < 1/B
above the crossover field B, ~ 2ht'/(eL).
= However, the beats remain, with Tyea o< V/B.

[ Grzegorz Rut & AR, unpublished. ]
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Conclusions & Acknowledgments

@ Both the conductivity scaling with a sample size and the
single-device magnetoconductance spectrum of BLG Corbino
disk may allow one to determine skew-interlayer hopping 7s.

@ A’common wisdom’ saying that the trigonal warping has no
effect starting from few-Tesla fields is put in question.
Collaboration: Funding:

FNP
Foundation
for Polish Science

ATIONAL SCIENCE CENTRE
LAND

N N
Grzegorz Rut (PhD student) m )

Project web site: http:/th.if.uj.edu.pl/~adamr/sonata.html
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