Graphene Bepeue Polycrystalline Graphene-Based Materials

Stephan Roche

stephan.roche@icn.cat

Institut Català de Nanociència i Nanotecnologia

What type of "graphene material" is relevant for applications ?

Trade off between structual quality Large scale mass production

Reduced graphene oxides (rGO)

Dozens of methods based on chemical, thermal or electrochemical means

The obtained rGO exhibit high density of structural defects

- pentagons/heptagons, octogons,... Very large zoology from single defects to large areas

Gomez-Navarro et al Nano Lett. (2010)

Muchharla et al 2DMaterials 1, 011008 (2014)

300 mm wafer-scalable 2D Materials

CVD-Grown 2DMaterials Polycrystalline morphology

Few atomic layers Black Phosphorus

Grain boundaries

Institut Català de Nanociència i Nanotecnologia

Graphene/Pt(111) J.M Gomez-Rodriguez (UAM, Madrid)

Long range 1D defects ("dislocations")

Huang et al, Nature 2011

Kang et al, Nature 2015

How polycristalline morphology affects device performances?

MARCH 2015 Chinese company announces Graphene-based smartphones

The Galapad Settler utilises graphene in its design to increase battery life and touchscreen sensitivity

"Graphene is used in in the 5.5-inch phone's touchscreen, 3000-mAh battery and case, said a representative for Moxi who gave his name as Mr Wu."

Chongqing-based graphene researcher and maker Moxi teamed up with Shenzhen-based tablet maker Galapad to release 30,000 of the Android handsets this week, according to their websites. Each device costs 2,499 yuan (**US\$399**)

Photo: Galapad

Graphene Grain boundary-based sensors 2014. U.S. patent application No. DH073, filed June 2014

Number of GBs

Nature Communications 5 4911 (2014)

Hybrid graphene/h-BN atomic layers

Precise 2D domains of graphene and h-BN are stitched together, *Combined electronic properties Create periodic arrangements of domains with size ranging from tens of nanometres to millimetres*

Pulickel Ajayan Nature Nanotech 8, 119 (2013) Jiwoong Park Nature 488, 627-632 (2012)

Multiscale and Predictive modelling

Charge/Thermal/Spin transport (Kubo, (Spin)-Hall Kubo, Landauer-Büttiker)

nstitut Català le Nanociència Nanotecnologia

Order-N [Tight-binding-like H]

Disorder systems, Magnetic fields,

- Charge transport
- Thermal transport (phonon dynamics-harmonic approx.)
- Electron-phonon coupling (molecular dynamics, T-dependence)
- Polaron transport (Lang-Firsov Transf.)
- Spin transport (SOC)

 $\sigma_{dc} = e^2 n (E_F) \lim_{t \to \infty} D(t)$ $D(t) = \frac{\text{Tr}[[\hat{X}, \hat{U}(t)]^{\dagger} \delta(E - \mathcal{H})[\hat{X}, \hat{U}(t)]]}{\text{Tr}[\delta(E - \mathcal{H})]}$

H. Ishii et al C.R. Physique 10, 283 (2009)

High-Performance Computing

Mean free path in intentionally damaged graphene

Institut Català de Nanociènc i Nanotecnolo

Experimental data : F. Giannazzo et al, Nanoscale Res.Lett.6, 109 (2011)

Low mobility & Insulating regime 1% of structural defects

Stone-

Wales

Divacancy 555777

A. Lherbier et al., Phys. Rev. Lett 106, 046803 (2011)

For 1% of such defects

Nakaharai et al., ACS Nano 7 (2013) 5694

Polycrystalline Graphene

Institut Català de Nanociència i Nanotecnologia

Polycrystalline graphene (models)

36 ICN29

Institut Català de Nanociència

i Nanotecnologia

Elastic mean free path

Institut Català de Nanociència i Nanotecnologia

🐌 |CN29

Transport scaling law (well connected grains)

🐌 |CN29

Institut Català de Nanociència

i Nanotecnologia

R

Charge Mobility of polyG

Institut Català de Nanociència i Nanotecnologia

Petrone et al., Nano Letters , 12 ,2751 – 2756 (2012)

Multiscale Graphene device simulation

Modeling of Graphene-FETs Drift-diffusion Transport

D. Jiménez, A. Cummings, F. Chaves,
D. Van Tuan, J. Kotakoski, S. Roche,
Applied Physics Letter 104, 043509 (2014)

Comparison with experiments

Institut Català de Nanociència i Nanotecnologia

Intra-grain conductance and inter-grain resistance R_{GB} Effective intergrain resistivity ρ_{GB}

$$\rho_{GB}^{expt.} \in [0.5, 8] \mathrm{k}\Omega.\mu\mathrm{m}$$

Jauregui et al, Solid. Stat Comm. 151, 1100(2011) Yu et al, Nat. Mater. 10, 443 (2011) Tsen et al, Science 336, 1143 (2012) Duong et al. Nature 490, 235 (2012) ρ_G^{Si}

 $\rho_{GB}^{simul.} \sim 0.065 \mathrm{k}\Omega.\mu\mathrm{m}$

Origin of lower values in experiments?

Duong et al. Nature 490, 235 (2012) Young-Hee Lee (SKKU)

Chemical functionalization of grain boundaries

Adsorbates randomly placed (only)on GB atoms

Resistance scaling upon adsorption

0.01

0.1

1E-3

Technological

target

10

Sheet resistance vs. grain size 1000 $ρ_{\rm GB}$ = 0.88 kΩ-µm H = 0%H = 1%H = 10%H = 50%100 H = 100%H = 200% Exp. (Duong) Exp. (Vlassiouk) R_{s} (k Ω) 10 $ρ_{_{GB}}$ = 1.4 kΩ-µm 1 $ρ_{\rm GB}$ = 0.066 kΩ-μm

Grain size (μ m) Significant increase in R_S with GB adsorbates

0.1

Comparison with reported experimental data

Institut Català de Nanociència i Nanotecnologia

4-probe STM probe Clark etal ACS Nano, 2013, 7 (9), pp 7956–796

GB resistivity vs. adsorbate nature and concentration

de Nanociència i Nanotecnologia

Controlled oxidation and hydrogenation of CVD graphene

Controlled oxidation and hydrogenation of CVD graphene

Conclusions : OZONIZATION

Formation of epoxide, O-related defects first massively populate Grain boundaries. After saturation limit, cracks ("vacancy") are created around GBs (etching graphene) **HYDROGENATION**

Hydrogen ad-atoms are homogeneously distributed. At a certain density presence of vacancies start dominate the Raman features

Space dependent photocurrent measurements to characterize polycrystalline graphene

Near-field photocurrent nanoscopy on bare and encapsulated graphene A.Woessner, P.Alonso-González, M. B. Lundeberg, Y. Gao, J. E. Barrios-Vargas, G.Navickaite, Q.Ma, D. Janner, K.Watanabe, A. W. Cummings, T. Taniguchi, V.Pruneri, S. Roche, P. Jarillo-Herrero, J.Hone, R. Hillenbrand, F.H.L. Koppens arXiv:1508.07864

Simulation of Seebeck coefficients in Polycrystalline graphene

www.MaterialsViews.com

Charge Transport in Polycrystalline Graphene: Challenges and Opportunities

Aron W. Cummings, Dinh Loc Duong, Van Luan Nguyen, Dinh Van Tuan, Jani Kotakoski, Jose Eduardo Barrios Vargas, Young Hee Lee,* and Stephan Roche*

Advanced Materials 26, 5079–5094 (2014)

Aknowledgments

Institut Català de Nanociència i Nanotecnologia

T. Dinh

Eduardo Barrios

David Soriano

Aron Cummings

Collaboration (Experin

Young Hee Lee (SKKU) José-Antonio Garrido (ICN2) Frank Koppens (ICFO)

