Excitons and exciton-phonon interactions in 2D MoS₂, WS₂ and WSe₂ studied by resonance Raman spectroscopy and Unusual angular dependence of the Raman spectra in Black phosphorus

Marcos A. Pimenta

Department of Physics, University of Minas Gerais (UFMG) Belo Horizonte, Brasil

B. R. Carvalho, E. del Corro, L. M. Malard, R. L. Moreira, E. S. Neto, C. Fantini, UFMG **H. B. Ribeiro**, C. J. Mattos, J. Zapata, E. T. de Souza, Mackgraphe, Brasil

M. Terrones, A.L. Elias, Penn-State, USA

A. H. Castro-Neto, NUS, Singapore

H. Terrones, RPI, USA

S. Mignuzzi, D. Roy, NPL, Teddington, UK

R. Saito and K. Sato, Tohoku Univ. Japan

Po-Wen Chiu, Taiwan

Outline

- ✓ Different types of excitons and excited states in MoS₂, WSe₂ and WS₂ by resonance Raman spectroscopy
- ✓ The double resonance Raman features and disorder induced bands in MoS₂
- ✓ Unusual angular dependence of the polarized Raman spectra of Black phosphorus

Raman spectroscopy in graphene and 2D materials

Disorder, defects, charges, edge structure, strain, number of layers, etc...

M. A. Pimenta et al., Phys. Chem. Chem. Phys. **9**, 1276 (2007) L. M. Malard et al., Phys Rep. **473**, 51-87 (2009)

Resonance Raman spectroscopy

Probes the electronic structure excitons and exciton-phonon interactions

- Ar-Kr laser, Dye laser (Rhodamine 6G, 110, DCM), Ti-sapphire, He-Cd, VERDI and Ar pump lasers

> 325 a 850 nm (1.45 a 3.81 eV)

Raman intensity → transition probability per unit time

$$I(E_i) = C \left| \sum_{a,b} \frac{\langle f | H_{e-r} | b \rangle \langle b | H_{e-ph} | a \rangle \langle a | H_{e-r} | i \rangle}{(E_i - E_a - i\gamma)(E_i - E_b - i\gamma)} \right|^2$$

Comparing Raman spectra of Graphene and MoS₂

M. A. Pimenta et al. Acc. Chem. Res. Vol. 48, 41-47 (2015)

Optical transitions in MoS₂, WS₂, WSe₂

Double resonance Raman process in Graphene and MoS₂

M. A. Pimenta et al., Accounts Chem. Res., Vol. 48 (1), pp 41–47 (2015)

S. Mignuzzi et al. , Phys Rev. B (2015), Vol. 91, 195411

X = E' or A'₁, reveals that C(E') = $1.11 \pm 0.08 \text{ nm}^2$ and C(A'₁) = $0.59 \pm 0.03 \text{ nm}^2$.

Excitons and exciton-phonon coupling in MoS₂ by RRS

Number of layers

B. R. Carvalho et al. . Phys Rev. Letters 114, 136403 (2015)

Excited Excitonic States in WSe₂ observed by RRS

W. Zhao et al ACS Nano 7, 791 2013

Resonance Raman studies in single layer WS₂ and WSe₂

Unusual angular dependence of the Raman response in Black Phosphorus

Unusual angular dependence of the Raman response in Black Phosphorus

H. B. Ribeiro et al. <u>ACS Nano (</u>2015), Vol. 9, 4270

Unusual angular dependence of the Raman response in Black Phosphorus

$$R_{ij}^{k} = \frac{\partial \epsilon_{ij}}{\partial q^{k}} = \frac{\partial \epsilon_{ij}'}{\partial q^{k}} + i\frac{\partial \epsilon_{ij}''}{\partial q^{k}} \qquad S_{A_{g}}^{\parallel} = (|a|sin^{2}\theta + |c|cos\phi_{ca}cos^{2}\theta)^{2} + |c|^{2}sin^{2}\phi_{ca}cos^{4}\theta$$

$$S_{A_{g}}^{\parallel} = [(|a| - |c|cos\phi_{ca})^{2} + |c|^{2}sin^{2}\phi_{ca}cos^{4}\theta$$

$$S_{A_{g}}^{\parallel} = [(|a| - |c|cos\phi_{ca})^{2} + |c|^{2}sin^{2}\phi_{ca}]sin^{2}\theta cos^{2}\theta$$

$$a = |a|e^{i\phi_{a}}, \quad c = |c|e^{i\phi_{c}}, \quad f = |f|e^{i\phi_{f}} \qquad S_{B_{2g}}^{\parallel} = (2|f|sin\theta cos\theta)^{2}$$

$$S_{B_{2g}}^{\parallel} = [|f|cos(2\theta)]^{2}$$

$$S_{B_{2g}}^{\perp} = [|f|cos(2\theta)]^{2}$$
Dichroism: Complex values of the Raman tensors
Anisotropy: Phase of the totally symmetric A_g Raman modes

$$M_{g}^{\parallel} = \frac{i\phi_{g}^{\parallel}}{i\phi_{g}^{\parallel}} = \frac{i\phi_{g}^{\parallel}}{$$

2.6

2.4

2.2

E_{Laser} (eV)

2.0

2.4

2.6

2.0

2.2

E_{Laser} (eV)

Comparative Study of Raman Spectroscopy in Graphene and MoS₂-type Transition Metal Dichalcogenides

M. A. Pimenta et al. Accounts Chem. Res. Vol. 48, 41–47 (2015)

Symmetry-dependent exciton-phonon coupling in 2D and bulk MoS₂ observed by resonance Raman scattering

B. R. Carvalho et al. Phys Rev. Letters 114, 136403 (2015)

Excited Excitonic States in 1L, 2L, 3L, and Bulk WSe₂ Observed by Resonant Raman Spectroscopy

E. del Corro et al. ACS Nano, Vol 8, 9629 (2014)

Effect of disorder in the Raman scattering of single-layer MoS₂

S. Mignuzzi et al. <u>Phys Rev. B</u> Vol. 91, 195411, (2015)

Unusual angular dependence of the Raman response in Black Phosphorus H. B. Ribeiro et al. <u>ACS Nano</u>, Vol. 9, 4270 (2015)

Origin of van Hove singularities in twisted bilayer graphene H.B. Ribeiro et at, <u>Carbon</u> vol. 90, 138-145 (2015)