

Biosensing using wafer-scale electrolytegated graphene field-effect transistors

J. Borme¹, N.C.S. Vieira^{1,3}, C.Towle¹, G.M. Junior¹, M.F. Cerqueira², N.M.R. Peres², P. Alpuim^{1,2}

¹ INL – International Iberian Nanotechnology Laboratory, Av. Mestre José Veiga, Braga, Portugal
 ² CFUM – Centre of Physics of the University of Minho, Campus de Gualtar, Braga, Portugal

³ **IFSC** – Physics Institute of São Carlos, University of São Paulo, São Carlos-SP, Brazil

Contacts: jerome.borme@inl.int, pedro.alpuim.us@inl.int

NANOTECHNOLOGY

Instituto de Física de São Carlos

October 14-16, 2015 Montreal, Canada

Graphene & 2D Materials International Conference and Exhibition

- Take advantage of graphene 2D highly sensitive electronic system for biosensing.
- Develop a clean-room compatible process for graphene.
- Wafer-scale fabrication of integrated devices.
- Access the process uniformity, device performance and the repeatability of the results

Graphene electrolyte-gated FETs

mobility $\approx 1000 - 3000 \text{ cm}^2 \text{ V}^{-1} \text{s}^{-1}$ In a electrolyte-gated FET the solid state gate dielectric is $i_{DS} (\mu A)^{0.55}_{0.5}$ 0.55 replaced by na aqueous solution with a certain ionic 0.45 0.4 strentgth. 0.35 0.3 0.25 0.2 The gate voltage is transmitted through the **electrolyte** in 0.15 graphene EGFETs 0.1 0.05└─ -1.2 -1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 $V_{GS}(V)$ The **electrical double layer** acts as a capacitor Gate Its thickness of just a few nanometres makes a high V_{GS} capacitance, comparable in magnitude and in series to C_{α} of graphene. $V_G = \frac{ne}{C_{FDI}} + \frac{\hbar |v_F| \sqrt{\pi n}}{e}$ SiO₂ Si Graphene is *very* sensitive to surface charge distributions The presence of charged molecules within the Debye IDS length will displace the electrostatic equilibrium. 7777

INTERNATIONAL IBERIAN MANOTECHNOLOGY LABORATORY

JNIVERSIDADE

Instituto de Física de São Carlos

Graphene & 2D Materials International Conference and Exhibition

October 14-16, 2015

Montreal, Canada

Graphene

epeue

Planar SG-GFET

- Replace the cumbersome gate electrode by a receded, integrated gate
- Fabricate on 200 mm oxidized Si-wafer

Graphene & 2D Materials International Conference and Exhibition

October 14-16, 2015 Montreal, Canada

Instituto de Física de São Carlos

Graphene deposition and transfer

Graphene CVD deposition in **100 mm** quartz tube on **copper catalyst**

- foil **25 μm**, 99.999 %
- sputtered film 1.5 µm (on Si wafer)
- ▶ 1020 °C, H₂:CH₄ 6:1, P = 0.5 Torr

(left) Cu (25 mm \times 25 mm \times 25 μm) foils (right) 200 mm wafer with thin film Cu, cut in 100 mm quarters

- Pre-transfer priming with HMDS
- Post-transfer anneal at 180 °C

Wafer treatment

UNIVERSIDADE DE SÃO PAULO

Instituto de Física de São Carlos

Graphene & 2D Materials International Conference and Exhibition

Graphene

Device fabrication

- Deposition of Au 30 nm/Cr 3 nm on SiO₂/Si
- Optical lithography (600 nm resist)
- Ion mill, ∡40° from normal incidence
- Optical lithography (2.2 µm resist)
- Deposition of 320 nm Al₂O₃
- Lift-off in acetone
- Transfer of graphene

Graphene is patterned by exposure to **oxygen plasma**, where **noble metals sublimate** (through volatile oxides e.g. Au₂O₃).

- \rightarrow One lithography step to protect gold with Al₂O₃ (10 nm)
- Optical lithography on top of Au gate
- Deposition of 10 nm Al₂O₃ and lift-off (gate is now protected)
- Optical lithography to protect graphene FET area
- O₂ plasma (O₂:Ar 2:1, 0.9 bar, 250 W, 2 min)
- Al₂O₃ wet etch in standard photoresist developer

October 14-16, 2015

슈즈라

Montreal, Canada

NIVERSIDADE E SÃO PAULO Graphene

epeue

Graphene & 2D Materials International Conference and Exhibition

Instituto de Física de São Carlos

Patterned graphene

Instituto de Física de São Carlos

Universidade do Minho

Graphene & 2D Materials International Conference and Exhibition

October 14-16, 2015

Montreal, Canada

Graphene

Graphene cleaning

- PMMA transfer lets organic residues on top of graphene Oxygen from polymers provokes unintentional p-doping
- Acetone is a not effective enough to completely dissolve **PMMA**
- Among effective solvents, ethyl acetate is the safest
- Transfer curve of a device cleaned in acetone followed by ethylacetate (unpatterned device)

	% PMMA dissolved			
Solvent	40	90	120	mir
Benzene	29.2	49.9	68.5	•
Toluene	18.7	29.7	40.0	
o-Xylene	7.3	11.3	15.5	
<i>m</i> -Xylene	16.7	26.2	27.3	
Trichloromethane	1.4	3.4	4.0	\frown
Trichloroethylene	96.0	-	-](1)
1,4-Dioxane	17.2	27.2	37.9	\sim
Cyclohexanone	45.2	73.2	77.3	
Acetophenone	21.0	31.9	45.6	-
Ethyl acetate	56.7	89.5	_](2)
Pentyl acetate	4.8	7.2	8.5	
Dimethylformamide	33.4	61.8	84.7](3)
	1 <u> </u>			- 9

Solubility of polymethyl methacrylate in organic solvents

I. Yu. Evchuk et al. Russian J. Appl. Chem. 78:10, pp. 1576-1580 (2005) DOI: 10.1007/s11167-005-0564-9

October 14-16, 2015 Montreal, Canada 今回中

Universidade do Minho

Graphene & 2D Materials International Conference and Exhibition

NANOTECHNOLOGY

Graphene electrolyte-gated FETs

- Channel resistance: ≈ 400-2000 Ω (W / L = 75 / 5,10,25) (see below 17 transfer curves)
 The receded gate devices show similar performance when compared to wire-gated FETs
- Leakage current of integrated gate is smaller, although in absolute they are both very small

Instituto de Física de São Carlos

Graphene & 2D Materials International Conference and Exhibition

NANOTECHNOLOGY

LABORATORY

Extracting GFET parameters

In a solid state GFET, mobility can be extracted by fitting the linear range of the transfer curve to $\mu = \Delta \sigma / (Cg \Delta Vg)$

In a liquid state GFET the total capacitance is not easily known due to the electrical double layer in series

Universidade do Minho

Graphene & 2D Materials International Conference and Exhibition

今回中

Extracting GFET parameters

Model for fitting the conductivity: **carrier resonant scattering** due to strong **short-range potentials** originated in impurities adsorbed at the graphene surface

$$\sigma = g_0 \frac{3\sqrt{3}}{4\pi} \frac{a_0^2 \alpha}{n_i} |V_G| \ln^2 \left(\sqrt{\alpha \pi |V_G|} \cdot a_0 \right)$$

- g_0 quantum of conductance
- n_i impurity concentration

Graphene

epeue

Graphene & 2D Materials International Conference and Exhibition

 $a_0 \approx 1.4 \,\mathrm{A}$ - range of scattering potential

 $\alpha \cdot V_G = n$

Aires Ferreira et al., Phys. Rev. B 2011, 83, 165402-1

October 14-16, 2015

今回中

Montreal, Canada

UNIVERSIDADE DE SÃO PAULO

Instituto de Física de São Carlos

Effect of ionic strength on the transfer curve

 $\rho = ne$, is the surface charge density ψ_0 is the surface potential *I* is the ionic strength of the electrolyte

 $\Delta |\psi_0| = -0.06 \text{ V}$

$$\Delta_1 = \Delta V_G \sim -0.08 \text{ V}$$

In DI water, at RT for 1:1 electrolytes

$$\lambda_{D} = \sqrt{\frac{\varepsilon \varepsilon_{0} k_{B} T}{2 N_{A} e^{2} I}} \qquad \lambda_{D} (nm) = \frac{0.304}{\sqrt{I(M)}}$$

However, because graphene has a hydrophobic surface, the dielectric constant of water is much lower than in the bulk $(5 \le \varepsilon \le 80)$!

M)

JNIVERSIDADE SÃO PAULO

Instituto de Física de São Carlos

Graphene epeue

Graphene & 2D Materials International Conference and Exhibition

GFETs for biosensing

 $V_{sd} > 5 \text{ mV} \rightarrow \text{electrochemical regime (biological reactions)}$

We work at the lowest bias possible, $V_{sd} \approx 200 \ \mu V$

Application	Sensitivity - reliability trade-off	Reusability
Environment monitoring	Low sensitivity (legal limits); Reliable	Continuous use
Medical diagnosis	Highly sensitive	Single-use

Graphene & 2D Materials International Conference and Exhibition

October 14-16, 2015 Montreal, Canada

Biosensing by direct detection

toxin

Microcystins: deadly toxins present in fresh water due to presence of *Microcystis* cyanobacteria blooms.

NANOTECHNOLOGY

Biosensing (direct detection)

Graphene GFET is sensitive to the presence of microcystin-LR (can probably detect 1 μ g/mL), a level \approx 1000 times too high compared to recommended exposure limit (1 μ g/L).

(current limit of detection: 0.1-1 µg/L in HPLC or commercial immunoassays kits)

This scheme would work with target molecules: -- more affinity to graphene (more benzene rings) -- more charges

INE Biosensing (with functionalization)

linker:

1-pyrenebuturic acid N-hydroxysuccinimide ester CAS number: 114932-60-4

UNIVERSIDADE DE SÃO PAULO

Instituto de Física de São Carlos

October 14-16, 2015 Montreal, Canada

Universidade do Minho

Graphene & 2D Materials International Conference and Exhibition

Biosensing: the target molecule

Blood Coagulation, Fibrinolysis and Cellular Haemostasis doi:10.1160/TH10-09-0621 © Schattauer 2011

The natural tissue plasminogen activator inhibitor neuroserpin and acute ischaemic stroke outcome

Raquel Rodríguez-González¹*; Mónica Millán²*; Tomás Sobrino¹; Elena Miranda³; David Brea¹; Natalia Pérez de la Ossa²; Miguel Blanco¹; Juan Pérez⁴; Laura Dorado²; Mar Castellanos⁵; David A. Lomas³; Maria A. Moro⁶; Antoni Dávalos²; José Castillo¹

¹Clinical Neuroscience Research Laboratory, Department of Neurology, Hospital Clínico Universitario, Universidad de Santiago de Compostela, Santiago de Compostela, Spain; ²Department of Neurosciences, Hospital Germans Trias i Pujol, Universitat Autònoma de Barcelona, Barcelona, Spain; ³University of Cambridge, Cambridge Institute for Medical Research, Cambridge, UK; ⁴Departamento de Biología Celular, Genética y Fisiología, Universidad de Málaga, Facultad de Ciencias, Málaga, Spain; ⁵Department of Neurology, Hospital Universitari Doctor Josep Trueta, Girona, Spain; ⁶Department of Pharmacology, School of Medicine, Universidad Complutense, Madrid, Spain

Summary

Neuroserpin is a brain-derived natural inhibitor of tissue plasminogen activator (tPA) that has shown neuroprotective effects in animal models of brain ischaemia. Our aim was to investigate the association of neuroserpin levels in blood with functional outcome in patients with acute ischaemic stroke. Due to the potential effect of tPA treatment inoutcome (for each quartile decrease, adjusted odds ratio [OR] 15.0; 95% confidence interval [CI], 3.5 to 66). In the tPA-treated cohort, high neuroserpin levels before tPA bolus had the stronger effect on favourable outcome (for each quartile, OR 13.5; 95%CI, 3.9 to 47). Furthermore, for each quartile in neuroserpin levels before tPA bolus there was a 80% (95%CI, 48 to 92) reduction in the probability of subsequent

Neuroserpin levels during the first hours of **acute ischemic stroke** have strong correlation to a good or poor outcome. Current clinical analysis take 48 h, too long for **prevention of severe hemorrhagic transformation**.

UNIVERSIDADE DE SÃO PAULO

Instituto de Física de São Carlos

October 14-16, 2015 Montreal, Canada

INCOME Biosensing (functionalized graphene)

Rodríguez-González et al. Neuroserpin in ischaemic stroke

Figure 1: Temporal profile of serum neuroserpin levels in patients with acute ischaemic stroke. A) Mean (95%CI of mean) neuroserpin levels in non tPA-treated patients with good functional outcome were slightly higher on admission, but showed a greater decrease at 24 and 72 h than in the poor outcome group. In the MANOVA analysis, there was a significant group by time interaction on neuroserpin levels (F= 59.8, p<0.001). Contrast test showed no difference by time (F=0.032, p=858) and no time by group interaction (F=0.861, p=0.355) from 24 to 72 h. B) Mean (95%CI of mean)

doi:10.1160/TH10-09-0621

Shift in the transfer curve as serpin concentration increased in the range from 0.01 ng/mL to 10 ng/mL

Graphene

epeue

UNIVERSIDADE DE SÃO PAULO

Instituto de Física de São Carlos

Functionalization with linker + antibody

Graphene & 2D Materials International Conference and Exhibition

October 14-16, 2015

슈즈라

Montreal, Canada

Conclusion and outlook

Demonstration of

- a solution-gated graphene FET with an integrated receded gate.
- the ability to fabricate these devices at wafer scale (200 mm)
- the ability to transfer graphene at large area (100 mm)

The devices show

- symmetric transfer curve for electron and hole regions with good mobility (1500 – 3000 cm² V⁻¹ s⁻¹)
- low leakage current and are sensitive to the charge environment.

The devices perform

- poorly in the tested label-free detection scheme (microsystin-LR)
- excellent detection level and fast for protein detection (neuroserpin, with antibody functionalization)

Outlook

 microfluidics devices to enhance measurement stability and increase integration in the view of point-of-care applications

- electrochemical measurements to complement electrical (Vdirac) data

UNIVERSIDADE DE SÃO PAULO

Instituto de Física de São Carlos

October 14-16, 2015 Montreal, Canada

arbon to life

Universidade do Minho

Graphene & 2D Materials International Conference and Exhibition

Acknowledgment

The graphene team at INL

Clarissa Towle visiting student from INL-MIT summer scolarship program: Performed microcystine experiments

October 14-16, 2015

Montreal, Canada

Graphene epeueo

N.M.R. Peres from Universidade do Minho: developed the carrier resonant scattering model.

UNIVERSIDADE DE SÃO PAULO

Instituto de Física de São Carlos

Universidade do Minho

Graphene & 2D Materials International Conference and Exhibition

Graphene EGFET as a biosensor

Graphene EGFET in a lowconductivity solution

Label-free detection of charged molecules (e.g. toxins)

Detection of antigens using **antibody functionalization**

Biomolecular recognition Preferred in most situations

Detection of antigens using secondary antibodies

(sandwich assay)

To lower detection limits or with small analytes

/Graphene senses charges within the **Debye length** of the solution.

INIVERSIDADE DE SÃO PAULO

Instituto de Física de São Carlos

Graphene & 2D Materials International Conference and Exhibition

Graphene

epeue

Universidade do Minho

Montreal, Canada

October 14-16, 2015