Thin MoS₂ layer grown on SiO₂ by CVD method

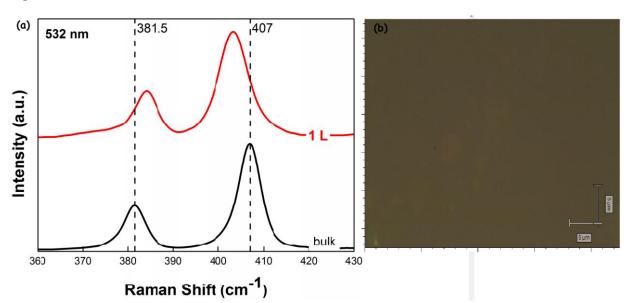
A. Cortés¹, C. Celedón^{1,2}

¹Depto. de Física, Universidad Técnica Federico Santa María, Casilla 110-V, Valparaíso, Chile ²Instituto Balseiro (U. N. de Cuyo and CNEA), Avenida Bustillo 9500, Bariloche, Argentina andrea.cortes@usm.cl

Abstract

The Transition metal dichalcogenides (TMD), MX₂ (M=Mo, W; X=S, Se, Te), inorganic graphene analogues, have attracted substantial attention due their great potential in various fields as catalysis, nanotribology, microelectronics, lithium batteries, hydrogen storage, medical and optoelectronics [1]. Especially MoS₂ due to the direct gap, that presents the monolayer, promises applications in optoelectronics. Substantial efforts have been addressed to growing of thin-layer MoS₂, using various methods including scotch tape based micromechanical exfoliation and, chemical exfoliation of bulk material, chemical vapor deposition (CVD), among other techniques [2].

In this work, CVD method was used to explore the growing of thin MoS_2 layer. MoS_2 (single and few layer) was grown directly on SiO2/Si substrates using MoS_2 powder. By optical microscopy was possible to identify MoS_2 layer-regions based on the optical contrast. Raman spectroscopy (laser λ =532 nm) analysis showed two typical active modes: E_{2g}^1 and A_{1g} [3]. These modes of vibration have been investigated both theoretically and empirically in MoS_2 bulk. E_{2g}^1 mode indicates planar vibration and A1g mode is associated with the vibration of sulfides in the out-of-plane direction. Raman peak position of E_{2g}^1 and A_{1g} was used in order identify the thickness of the layers [3]. The peaks were found to be blue-shift for E_{2g}^1 and red-shift for A_{1g} when it compared single layer with MoS_2 bulk.


References

[1] M. Chhowalla, H. Shin, L. Li et al. Chemistry, 5, 4, 263 (2013).

[2] S. Butler, S. Hollen, L. Cao et al. ACS Nano, 4, 2898 (2013).

[3] Li, Q. Zhang, C. Yap et al. Advanced Functional Materials, 22, 7, 1385 (2012).

Figures

(a) Raman spectrum for bulk and single-layer MoS₂ (laser λ =532 nm) and (b) Optical image of thin MoS₂ film onto SiO₂/Si substrate.

Acknowledgments: FONDECYT 11110522 and FONDEF D11I1213.