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Resumen

Electrostatic Force Microscopy (EFM) and its various implementations (capacitance, 
polarization, Kelvin Probe) are based on the electrostatic interaction between a biased Atomic 
Force Microscope (AFM) tip and a sample. Its high resolution and versatility have been used to 
analyze different properties of solid surfaces at the nanoscale1,2 or the dielectric response of 
single nanowires. Single nanowires can be used to connect different parts of a circuit in 
nanoscale devices and will play an important role in future electronics.3

 
One of the main advantages of EFM and, in general, Scanning Probe Microscopy (SPM), 

is its potential to estimate relevant magnitudes of the sample quantitatively. However, an 
inverse problem has to be solved to obtain the values of the magnitudes from experimental 
data.4 Following a standard approximation for the EFM interaction5 we can consider the EFM 
signal S as a convolution of the Equivalent Surface Profile Zeff and the Response Function RF: 
S=Zeff (rs,ε(rs)) * RF(rt,D) where Zeff includes information both from the sample topography rs 
and from the relative dielectric constant ε. The RF depends on the tip-sample distance D and 
the tip-cantilever geometry rt (which includes information of the tip apex radius Rtip and the 
macroscopic shape of the tip).6 Knowing RF, deconvolution techniques can be used to obtain 
Zeff. Unfortunately, in EFM experiments, D and rt are usually unknown, making the inverse 
problem undetermined. In previous works, Rtip has been obtained measuring the vertical force 
from a clean flat surface.7 However, although Rtip is a key parameter in the electrostatic 
interaction, traditional techniques require that all the parameters included in RF must be known 
before any quantitative data is obtained from Zeff. In this talk we show a technique that can 
solve the inverse problem and extract information from the sample without knowing the RF a 
priori. 

 
 We will analyze an EFM setup composed of a metallic tip over a metallic nanowire on a 

dielectric sample (see Fig. 1a). In this system, we will consider that both ε (one of the relevant 
parameters from Zeff) and D (needed to determine RF) are unknown. In a typical non-contact 
AFM setup, D is difficult to measure because of the bending of the cantilever induced by the 
tip-sample interaction.8 Working in humid environments, ε is also difficult to determine 
because it can be easily modified by the presence of water on the surface. First, we will use the 
Generalized Image Charge Method9 (GICM) to obtain the force gradient F’ (dF/dz where z is 
the vertical coordinate) as a function of D and ε. Then, using the F’ curves obtained by the 
GICM as the training set, we estimate simultaneously D and ε with an Artificial Neural 
Network (ANN) from F’ curves not presented during the training. Although both the GICM 
and ANNs have been used before to analyze and improve the resolution and system stability,10 
they have been never used to quantitatively measure and predict unknown magnitudes in SPM. 
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Figure 1: (a) Equipotential distribution calculated by the GICM for a spherical metallic tip 
scanning a metallic nanowire over a dielectric sample. (b) Scheme of the ANN (multilayer 
perceptron) used to obtain D and ε. The Input Layer (composed of 26 neurons) samples the  
gradient force (F’) curves at several lateral distances (x). 
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