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Abstract—Quantum state comparison, utilizing metrics like
fidelity and trace distance, underpins the assessment of quantum
networks within quantum information theory. While recent
research has expanded theoretical understanding, incorporating
error analysis and scalability considerations remains crucial for
practical applications. The primary contribution of this letter is
to address these gaps by deriving the novel operational trace
distance for multi-node networks, establishing a trace distance
vs. fidelity benchmark incorporating error bounds, and bridging
quantum operations with tensor network analysis. We further
explore the application of tensor network tools to quantum
networks, offering new analytical avenues. This comprehensive
approach provides a robust framework for evaluating quantum
network performance under realistic error conditions, facilitating
the development of reliable quantum technologies.

Index Terms—Tr = Trace Operation, TD = Trace Distance,
EPR node = Einstein-Podolsky-Rosen source of entanglement in
a quantum network

I. INTRODUCTION

Quantum state comparison plays a fundamental role in
quantum information theory, enabling the assessment of sim-
ilarity or dissimilarity between quantum states. Various mea-
sures, such as fidelity and trace distance, have been pro-
posed to quantify the degree of similarity between states.
Fidelity, defined as the overlap between two states, captures
their similarity, while trace distance quantifies the maximum
distinguishability. These measures serve as benchmarks for
evaluating the effectiveness and performance of quantum net-
works, which are crucial for the implementation of quantum
communication and computation protocols.

In recent years, there has been significant progress in under-
standing the applications and implications of fidelity and trace
distance as benchmarks for state comparison. The literature has
explored their interpretation, significance in preserving quan-
tum coherence and entanglement, and in relation to various
mathematical properties such as logarithmic negativity and
entropy [1]–[8]. However, there are still notable gaps in the
bibliography, particularly regarding the incorporation of errors
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into quantum network benchmarks and the scalability of these
benchmarks for example in review of the literature [1], [6]–
[8]. While works such as [1] exist that present a benchmarking
procedure for quantum networks, including such bounds would
enhance the assessment of the performance and reliability of
the benchmarked networks.

While [2] provides a strong foundation in the mathematics
of quantum information, the inclusion of upper and lower
error bounds would further solidify the analytical framework
for quantum information processing. Similarly, [3], [4], [5]
and [7], offer valuable insights into quantum communication
and computation but would benefit from an explicit treatment
of error bounds. Incorporating error bounds would enhance
the assessment of protocol robustness, such as in the case of
Clauser-Horne-Shimony-Holt (CHSH)-based protocols.

In the realm of fidelity, [6] and [8] investigate properties of
fidelity; however, a comprehensive understanding of fidelity of
recovery necessitates the consideration of error bounds. This
extends to the analysis of continuous variable quantum net-
works in [9], where error bound analysis would provide deeper
insights and connections to classical complex network error
models. The practical implementation of quantum networks
highlights their inherent susceptibility to errors. A rigorous
analysis, incorporating error bounds into fidelity and trace
distance benchmarks, is essential for evaluating state similarity
and reliable information processing in real-world quantum
networks. Addressing the current gap in the literature is crucial
for understanding the limitations and ensuring the robustness
of these benchmarks under realistic conditions.

To bridge existing research gaps, this letter offers the
following key contributions: a) We derive and implement a
practical form of trace distance applicable to 2, 3, and multin-
ode quantum networks, enabling rigorous assessment of state
similarity. b) We investigate the impact of nearest and farthest
node pairings on overall network fidelity, offering insights
for optimizing network architecture. c) We establish a new
benchmark based on the interpretation of the trace distance
against fidelity relationship. Incorporating error bounds (from
Fuchs and van de Graaf) enhances the benchmark’s robustness
for real-world applications. d) We also connect core quantum
operations to tensor network diagrams, opening avenues for
applying tensor network techniques to quantum information
analysis. e) We adapt tools from tensor network analysis (e.g.,
Singular Value Decomposition, eigenvalue analysis) for the
targeted study of quantum networks, and finally, we draw
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Fig. 1. Tensor network diagrams of trace distance and trace norm of
density matrices ρ and σ, which represent a recoverable mixed-state of the
wavefunction ψ in a Hartree-Fock model

connections between these adapted tools and their counter-
parts in classical graph theory, providing a richer theoretical
framework for understanding quantum network behavior.

II. DERIVATION OF AN OPERATIONAL FORM OF THE
TRACE DISTANCE

Here we implement the use of the operational trace distance
as a test of link fidelity within a simple quantum network
consisting of two quantum nodes. We rely on the concept
that each quantum node within a quantum network can be
represented by its density matrix [2]; so essentially we are
leveraging operational trace distance between density matrices
to measure link fidelity. We start by defining a quantum
channel S : N,M , where N and M refer to the Hilbert space
dimensions of the input and output systems, respectively. For
example, if we have a quantum channel S : N,M where
N = 3 and M = 2, it means that the input system has a
Hilbert space dimension of 3, and the output system has a
Hilbert space dimension of 2.

We also introduce a measurement operator {Λx} =
Λ,

∑
x Λx = I , where x is a classical variable bit and I

represents the Identity operator. We consider that the mea-
surement operator operates on the density matrices ρ ⪰ 0
and σ ⪰ 0, where ρ and σ are the density matrices used
for representing the two quantum nodes within the quantum
network. If ρ2 = ρ, the density matrix represents a noiseless
scenario, i.e. the quantum state of the involved quantum node
exists on the surface of the Poincare / Bloch sphere [3].
It is worth-mentioning here that in quantum mechanics, a
quantum state (corresponding to an energy level in a har-
monic oscillator) is degenerate if it corresponds to two or
more different measurable states of a quantum system. When
degenerate or mixed, the density matrix will then exist within
the Poincare/Bloch sphere. Furthermore, if ρ and σ are isolated
in terms of quantum nodes, they will be in pure quantum states.
If ρ and σ are connected through an interacting local channel,
like in a quantum network, they will emerge as a Hartree-Fock
wavefunction, ψ of ρ− σ mixed states.

In analyzing quantum networks, tensor network notation
provides a powerful tool for representing quantum channels
operating between nodes represented by density matrices (see
Fig. 1). This notation is especially useful for visualizing

Fig. 2. Tensor Network Diagrams for Matrix Operations

operations like trace distance and fidelity, which are related
to the trace norm. We demonstrate this in Fig. 2.

1) Assumptions: We assume the following rules regarding
wavefunction eigenvectors in bra-ket notation

|ψ⟩⟨ψ| = |ψ⟩ (1)
ProbX(x) = Tr {Λxρ} (2)

where Tr represents Trace of a matrix and if Λxρ, then we
need to conduct a measurement of x from ρ. We also assume
that for every quantum channel we must have some classical
measurement, such that,

ρ→
∑
x

Tr {Λxρ} |x⟩⟨x|︸ ︷︷ ︸
classical

basis

(3)

Assumption in (3) is crucial for determining the upper/lower
bounds on quantum channels when combined. For example,
this is the case of super-activated channels, wherein we
combine two or more zero capacity channels to generate
nonzero capacity, and is applicable to some kinds of quantum
nodes which act as network functional operators, like, quantum
switches, repeaters etc.

2) Formulation of Operational Form of TD: Next we start
with the analytical representation of Trace Distance (TD) as,

∥ρ− σ∥1 =
∑

|λi| (4)

where {λi} are the resultant eigenvalues of the mixed quantum
state ρ − σ over the connected quantum network. Next,
we explore the operational meaning of TD. To use TD
in the calculation of network capacity, we need to formu-
late the variational characterisation of TD as an optimiza-
tion problem, the representation of which is provided as,
max0≤Λ≤{Λ(ρ−σ)}

1
2∥ρ − σ∥1. Here, we are optimizing over

Λ elements as long as the elements are less than those in
I but still positive, maximising over operators to compute a
probability. Therefore, intuitively, we can say that “probability
difference” is analytically equivalent to TD.

Using the above thought, we manipulate (4) to generate an
inequality given by,

Tr{Λρ} ≤ ∥ρ− σ∥2 +Tr{Λσ} (5)

In (5), if we pick a Λ that is not an optimal measure,
we can resort to approximation by computing probability.
It is worth-mentioning here that TD is a useful metric of
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measure in quantum information theory (QIT) as it provides
an operational interpretation of quantities which we need for
“Hypothesis testing” and interpret the inequality as either a
game or a semi-definite program (SDP).

The inequality in (5) can be solved using a variation of
the CHSH (Clauser-Horne-Shimony-Holt) game [] approach
combined with elements of the Prisoner’s Dilemma [], and a
quantum measurement involving states ρ and σ. The estima-
tion errors in decision-making in the game can be defined in
terms of two types of errors, Type I and Type II, involving
Bayesian probability and measurements. From the game per-
spective, we are dealing with quantum states shared between
two parties, Bonnie and Clyde (B and C), and a detective who
is trying to determine which states they are using based on
measurements, where,

• States ρ and σ: These are the quantum states shared
between Bonnie and Clyde. The detective wants to deter-
mine which of these states is being used.

• Measurement Λ: This is the measurement performed by
the detective. The condition Λρ+ Λσ = I indicates that
the measurement operators Λρ and Λσ are complemen-
tary and form a complete set of orthogonal projectors.

• Error Analysis: involves guessing σ using Bayesian prob-
ability. The parameter r ∈ [0, 1] represents the probability
of guessing ρ, and 1 − r represents the probability of
guessing σ. The quantity Tr[Uσρ] means one is calculat-
ing the trace overlap between the actual state σ and the
guessed state ρ using the Unitary operator U .

The actual error rates will depend on the specific values of
r, the properties of the states ρ and σ, and the properties of
the measurement operator U to arrive at a simple formula for
producing estimation of errors using methods of meoments on
a random value of r, probability of which can be minimized
using optimization.

3) Error Analysis: Maximum Likelihood Estimation
(MLE) frames the measurement problem as an optimization
task. We seek the parameters that best explain the measured
eigenvalues (states ρ and σ) while incorporating errors. Error
regions are constructed around these optimal parameters using
methods of moments. Mathematically, this can be represented
as,

Perror

(
1

2
, ρ, σ

)
= Prob

[
error[ρ]Prob[ρ]

+ Prob[error[σ]Prob[σ]
]

= Tr[(I − Uρ)] + Tr[Uσ] · (1− r) (6)

with Trace Distance itself then expressed as;

TDϕ =
1

2

(
1 +

1

2
∥ρ− σ∥1

)
+ /− Perror

(
1

2
, ρ, σ

)
(7)

The above is the equation that gives us a concrete way to
calculate the trace distance. This is essential for practically
measuring the difference between the initial and final states
represented by density matrices ρ and σ. Now, refer back to
Fig. 1 where, we represent the derived concept so far in terms
of tensor network diagram.

III. INTERPRETATION OF AN OPERATIONAL FORM OF THE
TRACE DISTANCE

We can interpret Perror
(
1
2 , ρ, σ

)
as follows: if ρ, σ are indistin-

guishable, i.e. in a wave-function ψ of probabilities, then the
trace distance between them has to go to 0 and Perror =

1
2 (i.e.

we have the measure of ρ vs σ as a perfect coin toss). On the
other hand if ρ and σ are maximally distinguishable (i.e. they
exist on orthogonal subspaces then T.D = 1 and Perror → 0
(i.e. trending towards zero errors)

The operational trace distance formula provides a tool to
quantify the degree of change in quantum systems undergoing
non-unitary evolution (which involves incoherent processes
like relaxation and dephasing). This brings us to the concept
of master equations. Master equations offer a theoretical
framework to describe the time evolution of open quantum
systems. Fundamentally, they model how a system interacts
with its environment, leading to processes like dissipation, de-
coherence, and relaxation. Mathematically, the master equation
is a differential equation that describes the time derivative of
the density matrix of the system. The density matrix, denoted
by ρ, is a mathematical representation of the quantum state
of the system. The master equation is typically written in the
Lindblad form [11]:

dρ

dt
= −i[H, ρ] +

∑
k

(
LkρL

†
k − 1

2
{L†

kLk, ρ}
)

(8)

where, H represents the system’s Hamiltonian, which de-
scribes the energy of the system. The first term on the right-
hand side, −i[H, ρ], accounts for the unitary evolution of the
system governed by the Hamiltonian.

The second term on the right-hand side captures how the
system interacts with its environment, leading to effects like
dissipation (loss of energy) or decoherence (loss of coher-
ence). This term includes a sum over “collapse operators”,
denoted by Lk. These operators represent different channels
through which the system loses coherence or energy to the
environment. In simpler terms, they act like quantum versions
of noise sources we encounter in classical systems.The terms
LkρL

†
k and L†

kLkρ quantify the dissipation and decoherence
processes, respectively.

In the QuTiP Python library, the versatile qutip.mesolve
function handles evolution under both the Schrödinger equa-
tion and master equations within quantum networks. This
flexibility allows the user to choose the appropriate model.
To analyze the evolution of trace distance, we focus on
how density matrices change over time according to the
Schrödinger equation using the QuTiP library. Let’s assume
that the Hamiltonian of the system is denoted by H . The time
evolution of the density matrix ρ is given by dρ

dt = −i[H, ρ],
where [, ] denotes the commutator.

Now, let’s consider two initial density matrices ρ1(0) and
ρ2(0) at time t = 0. The time evolution of these density
matrices can be written as:

ρ1(t) = e−iHtρ1(0)e
iHt (9)

ρ2(t) = e−iHtρ2(0)e
iHt (10)
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Fig. 3. Evolution of Trace distance measured between 2 nodes in a noisy
environment as a function of time.

Using these expressions, we can calculate the trace distance
at time t as:

D(ρ1(t), ρ2(t)) =
1

2
Tr|e−iHtρ1(0)e

iHt − e−iHtρ2(0)e
iHt|

(11)

To represent the Hamiltonian H in terms of orthogonal states,
we can decompose it as: H =

∑
n,mEnm|n⟩⟨m|, where Enm

are the energy eigenvalues and |n⟩⟨m| are the corresponding
projection operators. The states |n⟩ and |m⟩ are orthogonal,
i.e., ⟨n|m⟩ = δnm, where δnm is the Kronecker delta.

IV. NUMERICAL RESULTS

The master equation uniquely empowers researchers to model
both the unitary evolution of a density matrix and the impact
of entanglement with environmental variables. This holistic
approach elucidates the temporal dynamics of open quantum
systems, including energy dissipation stemming from envi-
ronmental interactions. The operators and rates within the
master equation precisely characterize the nature and influ-
ence of these interactions. QuTiP’s operational trace distance
formula can be used within master equations to model noisy
quantum environments. This allows us to track how a system
evolves from a state of maximum difference (high initial trace
distance) towards a less distinguishable steady state (trace
distance approaching 1/2) due to decoherence. This analysis
provides insights into how distinguishable states become less
so over time when coupled to a noisy environment (Fig. 3).

The trace distance between an Einstein-Podolsky-Rosen
(EPR) source and a cavity offers a way to quantify the
distinguishability of quantum states within this system. It
could be used to measure how the ideal EPR state generated
by the source deviates from reality due to imperfections, or to
track the effects of cavity interactions on the entanglement of
EPR photons. Crucially, the specific choice of states being
compared is important. The complexity of modeling this
system accurately might necessitate open quantum system
approaches. Other relevant metrics include fidelity, which as-
sesses similarity to a desired state, and entanglement measures,
which directly characterize the entanglement present.

We investigated the time-dependent fidelity of orthogonal
states in a 2-node network in Fig. 4. To establish a reference
point, we introduced a 50/50 probability channel between
the network’s supernode (formed by the nearest and farthest

Fig. 4. Evolution of Link Fidelity between 2 nodes in a noisy environment
as a function of time.

nodes) and the EPR source. Interestingly, the calculated fideli-
ties of the supernode elements were very similar, suggesting
a stronger connection within the supernode than between the
supernode and the EPR source. Using Python’s GRAPE (Gra-
dient Ascent Pulse Engineering) algorithm, we modeled how
the supernode’s fidelity relative to the EPR source evolves over
time. The model revealed noise-induced oscillations leading
to periodic dephasing. The fidelity F between the target state
ρtarget and the evolved state ρevolved can be calculated using the
Quantum GRAPE technique in QuTip. For a SPDC (Sponta-
neous Parametric Down-Conversion) source, the fidelity can
be expressed as:

F =
1

2
(1 + Tr{ρtargetρevolved}) (12)

The Frobenius norm can be used to relate the quantum nodes
in tensor notation diagrams to the calculation of the quantum
fidelity between two or more density matrices. Specifically, for
two density matrices ρ and σ, the quantum fidelity is given by:
F (ρ, σ) =

(
Tr
√√

ρσ
√
ρ
)2

. The Frobenius norm can be used
to simplify the calculation, and thus representation in tensor
diagram, of the quantum fidelity. By representing the density
matrices as tensors, the quantum fidelity can be expressed
in terms of the Frobenius norm of the tensor difference
between the two density matrices: F (ρ, σ) =

∣∣∣∣ρ1/2σρ1/2∣∣∣∣
F

,
where ρ1/2 represents the square root of the density matrix ρ.
This relationship bridges the Frobenius norm (used in tensor
analysis) with quantum fidelity. By calculating the Frobenius
norm of the difference between two or more density matrix
tensors, we directly assess their similarity. This provides a
quantifiable measure of quantum fidelity.

Now we plot the evolution of 3-node network fidelity with
time in Fig. 5. While the overall network fidelity increases
with time, the quality and coherence of the EPR source
degrades over time. The reason can be attributed to noise and
imperfections in the system resulting in degradation of the
entanglement source, while still contributing to the improve-
ment of network fidelity over time. In practice, the bridging
together of fidelity and trace distance measures subject to
errors produces a versatile benchmark, alluded to by previous
work in quantum network benchmarking [1] but not developed
with bounds to provide scope of the benchmark with errors in
mind. We provide the bounds for the Trace distance vs Fidelity
measures.
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Fig. 5. Evolution of network Fidelity between 3 nodes in a noisy environment
as a function of time.

Fig. 6. Trace distance v/s fidelity bounds as compared to the Fuchs-Van de
Graaf benchmark.

1) Upper bound:: The upper bound of the fidelity, denoted
as Fupper, is given by: Fupper =

√
1− F (ρ, σ), where F (ρ, σ)

represents the fidelity between the states ρ and σ. In terms of
the Trace distance this is then: Fupper =

√
1− TD, where TD

represents the trace distance between the two quantum states.
The upper bound represents the maximum possible fidelity
between the two states. It indicates the best-case scenario for
the fidelity, assuming no errors or disturbances in the quantum
network.

2) Lower bound:: The lower bound of the fidelity, denoted
as Flower, is given by: Flower =

√
F (ρ, σ), where F (ρ, σ)

represents the fidelity between the states ρ and σ. In terms
of the Trace distance this is then: Flower =

√
TD. The lower

bound represents the minimum possible fidelity between the
two states. It indicates the worst-case scenario for the fidelity,
considering the maximum amount of errors or disturbances
in the quantum system. The expected fidelity against trace
distance bound measures are compared against the Fuchs-Van
de Graaf benchmark [12] in Fig. 6:

From our perspective, the upper bound on fidelity serves
as a gauge for the error level within a quantum channel. A
higher upper bound signifies a smaller overlap between the
transmitted quantum states and the potential repeater’s states.
In simpler terms, this reduces the probability of information
leaks that might occur due to errors or issues with synchro-
nizing the measurement setup. The lower bound on fidelity,
on the other hand, offers insights into potential communi-

cation system failures. A very low lower bound suggests a
situation where desynchronization has essentially caused the
collapse of entanglement exchange. This collapse could be
due to factors like depolarization within the channel (if we’re
using polarization density as the entanglement observable) or
significant changes in the polarization extinction ratio (PER)
between measured density matrices. PER essentially measures
the strength of a dominant polarization state compared to its
orthogonal counterpart after traveling through a system.

V. CONCLUSION

Our operational form of trace distance, calculated between
two nodes within a quantum network, provides a valuable
metric for assessing overall network fidelity as the network
scales. By introducing error bounds on fidelity vs. trace dis-
tance, we establish a robust benchmark. We propose grounding
this benchmark in physical observables, such as polarization
density (represented on the Poincaré sphere) and polarization
extinction ratio (PER). This approach is applicable to experi-
mental setups using polarization-entangled light in both fiber
and free-space networks, with links to established performance
metrics like the Quantum Bit Error Rate (QBER).
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