

Content

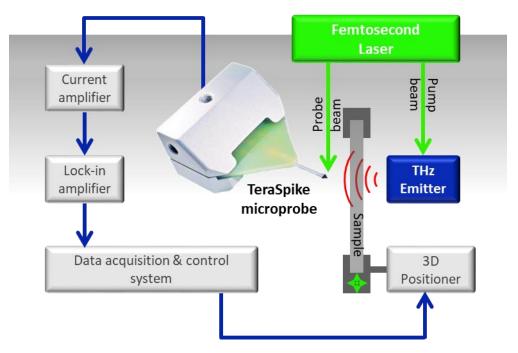
- Application areas
- Scanner System: TeraCube
- Terahertz microprobe series
- TeraSpike transceivers
- TeraSpike XR-option
- TeraSpike WT-option
- TeraSpike TD-1550-Y-BF
- THz Emitter: TeraBlast
- Frequency conversion: SHG-Unit
- THz Test Target: P-TTT-2-1200
- Low-noise amplifier: TeraSpike Companion new
- Sub-system modules

Terahertz microprobe

Application areas

Terahertz microprobing technology:

Taking advantage of Terahertz range benefits without being compromised by wavelength-based resolution limitations.


			° •
Terahertz Research	Thin-film Inspection	Chip-package Testing	Volume Screening
 Application areas: Metamaterials Plasmonics Passive devices Emitters Antennas Waveguides Sensor surfaces Graphene 	 Application areas: Solar cells Displays Flexible electronics Semiconductors Graphene Transparent conductors 	 Application areas: Time-domain reflectometry Fault isolation Packaging level inspection 3D integration Through silicon via (TSV) 	 Application areas: Laser plastic weld inspection Fiber inforced polymers Chip underfill inspection Organic layer screening
 Near-field access Cost-efficient system extension High-sensitivity Low-invasiveness Polarisation sensitive Broadband 	 Sheet resistance imaging Contactless Micron-scale resolution Large-area scanning High-speed scanning 	 Benefits: Market leading TDR resolution Sub-ps rise-times Contactless Non-destructive Cost advantage over all-electronic systems 	 Non-destructive Fast inspection Screening of Vis/IR opaque plastics Detection of micron-scale structures

Optoelectronic

Terahertz technology

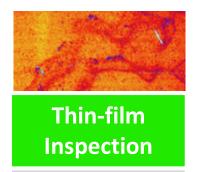
Femtosecond-laser-based THz systems

Photoconductive TeraSpike microprobes are the key enabling components for high-resolution Terahertz imaging offering unprecedented sensitivity, resolution and non-invasiveness.

Simplified exemplary scheme of a TeraSpike-enabled THz near-field imaging system.

We offer

- Systems: Near-field imaging systems, sub-systems, modules & custom solutions
- Components: THz microprobes, THz emitters, accessories,...
- Measurement services

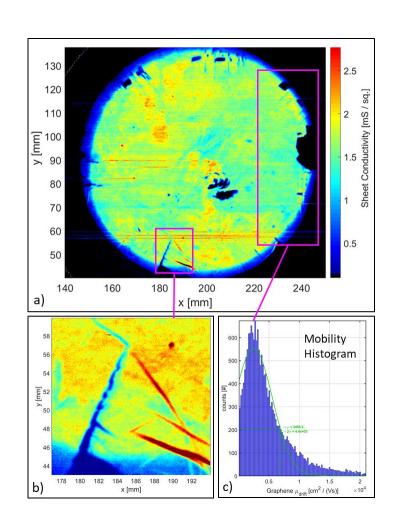

Please contact us for further information or inquiries.

Protemics GmbH Otto-Blumenthal-Str. 25 52074 Aachen Germany www.protemics.com info@protemics.com Phone: +49 241 8867 140 Fax: +49 241 8867 560

Application areas

Thin-film inspection

Application areas:

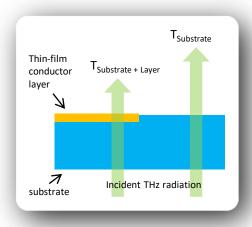

- Solar cells
- Graphene/ 2D-Mat.
- Displays
- Flexible electronics
- Semiconductors
- Transparent conductors

Benefits:

- Sheet resistance imaging
- Contactless
- Micron-scale resolution
- Large-area scanning
- High-speed scanning

Contact-free, high-resolution and high-speed sheet resistance & mobility imaging

Semiconductor wafer scanners with TeraSpike microprobes yield more information in a shorter time — compared to the prior art*.


a) Results from a Terahertz near-field transmission measurement at a four-inch diameter graphene layer on silicon. b) High-resolution measurement within the marked area with visible defects from the graphene transfer process. c) Charge carrier mobility histogram for the marked region of the graphene layer.

^{*} Such as Eddy-Current probe, or four point probe tools.

Thin-film inspection

Sheet resistance imaging

THz transmission working principle

Tinkham formula:

$$T = \frac{T_{SL}}{T_S} = \frac{1}{1 + \frac{Z_0}{R_{sh} \cdot (n+1)}}$$

M. Tinkham: Phys. Rev. vol. 104, pp. 845-846, 1956

Accessible measurement ranges and sample conditions

	Optimal	Acceptable	Difficult
Graphene R_{sh}	$5-500\Omega/\Box$	$0.5-5000\Omega/\Box$	$\begin{array}{c} <0.1\Omega/\square\\ >10000\Omega/\square \end{array}$
Substrate Material	Sapphire Al_2O_3 , Crystalline Quartz SiO_2 , Highly resistive $(\rho > 100\Omega cm)$ semiconductors	Flexible Dielectrics, Lightly doped Semiconductors	Paper, Strongly Doped or metalized Substrates
Substrate Curvature and stiffness	Flat and rigid	Flexible and slightly bended	Strongly curved or 3-dimensional
Substrate Thickness variation	$< 1 \mu \mathrm{m}$	$<20\mu\mathrm{m}$	$> 100 \mu \mathrm{m}$
Spatial Resolution	$25-250\mu\mathrm{m}$	$10 - 10000 \mu \mathrm{m}$	$< 5 \mu \mathrm{m}$
Sample Size (longer edge)	$20 - 100 \mathrm{mm}$	$5-150\mathrm{mm}$	< 1 mm > 300 mm
Measurement Points	100 Px - 100 kPx	< 1 MPx	> 1 MPx

THz near-field scanning system

TeraCube Scientific

The new standard for micron-scale resolution THz imaging on large areas

THE TeraCube Scientific is a fully automated THz near-field scanning system. The system provides a high-efficient source for the optical generation of broadband THz pulses which can be transmitted through planar samples. Spatially and temporally resolved detection of the transmitted pulses in the near-field of sample surfaces is enabled by Protemics TeraSpike microprobes integrated near-field detectors. The system enables measurements on arbitrary surface topographies through active control of the detector/surface distance. It can be driven by an existing or new fs-laser source with suitable specifications.

Application areas

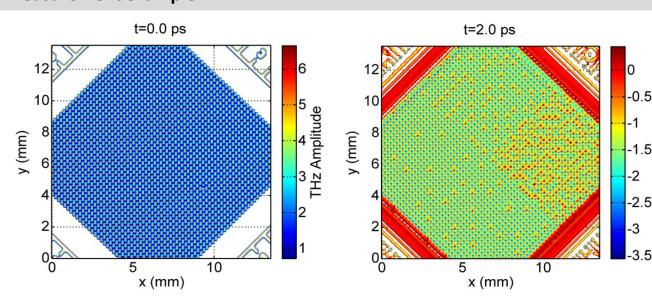
- THz Metamaterial research and sensing application
- Semiconductor wafer inspection
- Sheet resistance imaging
- Graphene analysis
- THz device characterization
- Microstructure analysis
- Non-destructive testing

Key features

- High-speed continuous move scanning & data acquisition
- Optical sample topography detection for scanning at constant microprobe/surfacedistance
- Synchronized motion-control and real-time position detection
- Linear polarized and rotatable THz emitter for polarizationdependent measurements
- High performance THz emitter/detector component
- High dynamic range Lock-in detection
- Integrated CCD camera module for monitoring of microprobe tip and sample position
- System control and measurement automation software on integrated PC unit
- Software-implemented alignment monitoring function and system health check electronics
- Software assisted microprobetip to sample surface approximation
- Time-domain signal preview mode for fast optical alignment
- Data-export as plain-text or Matlab-compatible format
- System housing for laser beam and dust protection
- Open extendable lab-type system platform

Protemics GmbH Otto-Blumenthal-Str. 25

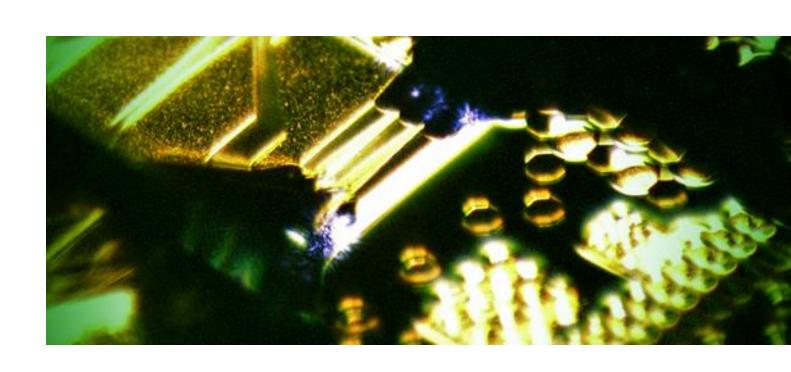
52074 Aachen Germany www.protemics.com info@protemics.com Phone: +49 241 8867 140 Fax: +49 241 8867 560


THz near-field scanning system TeraCube Scientific

Technical data

new

		IIEW
Туре	TeraCube Scientific	TeraCube M2
Optical system construction	Free-space beam	Fiber-coupled
Spectral range	0.05 – 3 THz	0.05 – 4 THz
Maximum sample size (x, y, z)	20 cm, 20	cm, 1 cm
Maximum scanning speed (x, y)	Up to 10	00 mm/s
Min. scanning time per pixel	10 ms / Single TDU position 10 ms / Full TD Transi	
Maximum scanning range (x, y, z)	18 cm, 18	cm, 3 mm
Time-domain scanning range	1000 ps 5 200 ps	
Time-domain step resolution (dt)	6.6 fs	50 fs
Bi-directional repeatability (x, y, z)	+-0.1 μm, +-0.1	μm, +-0.15 μm


Measurement example

Installation requirements

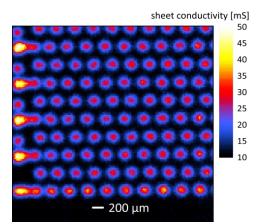
- Vibration-damped optical table with 1.5m x 1m x
 1.5m of space for system placement
- Laser laboratory specification of class 3b or higher

Example plots of the THz near-field distribution measured at a metamaterial surface for sensing applications which is locally loaded with sample material. Left: Peak excitation state, right: 2 ps after excitation.

Next generation

Terahertz microprobe series

TeraSpike


LT-GaAs photoconductive field detector

THE microprobe device series TeraSpike has been introduced in 2013. Since then through our customers' feedback and application-driven demands the functional range of the microprobes has been continuously extended. The TeraSpike microprobe is a versatile detector for radiated and surface-near electric fields in the THz frequency-range offering unprecedented performance, robustness and applicability. It is the key component of the TeraCube Scientific near-field scanning system. Furthermore, it seamlessly fits into most other THz time-domain systems with optical excitation wavelengths below 860 nm. It is the most cost-efficient solution to turn your system into a powerful high-resolution near-field THz system.

Your laser-based THz system can do much more than just spectroscopy – discover the fascinating world of high-resolution THz applications!

Measured near-field image of a pulse-excited THz metamaterial surface.

Measured sheet conductivity image of a laser-doped multicrystalline silicon wafer.

Key features

- Smallest active THz probe-tip on the market with only 1 µm cantilever thickness based on a patented design (DE 10 2009 000 823.3)
- Spatial resolution up to 3 μm
- Frequency range 0 4 THz
- Adaptable to all laser-based THz-Systems with λ < 860 nm
- Mounting compatible with standard opto-mechanical components
- Required optical excitation power < 1 mW

Applications

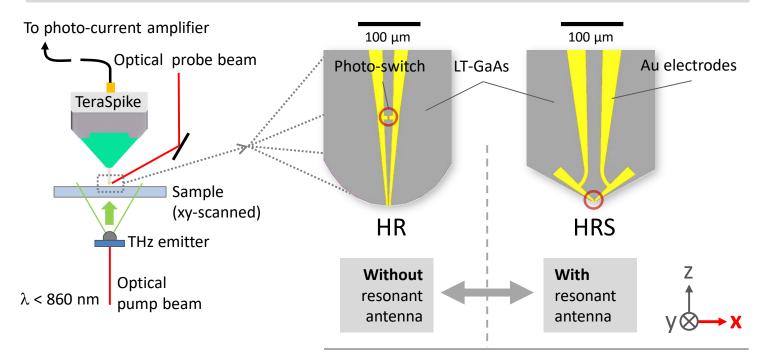
- Terahertz research:
 Metamaterials, plasmonics,
 graphene, waveguides, ...
- High-resolution Terahertz nearfield imaging
- Contact-free sheet resistance imaging of semiconductors
- MMIC device characterization
- Non-destructive chip inspection
- Time-domain reflectometry (TDR)

Transversal field microprobes

TeraSpike TD-800-X

Technical data

TeraSpike TD-800-X-	HR	HRS
Max. spatial resolution	3 μm	20 μm
PC gap size	1.5 μm	2 μm
Dark current @ 1 V Bias	< 0.5 nA	< 0.5 nA
Photocurrent (*)	> 0.2 μA	> 0.2 μA
Excitation wavelength	700 8	360 nm
Avg. excitation power	0.1 4 mW	
Connection type	SMP	

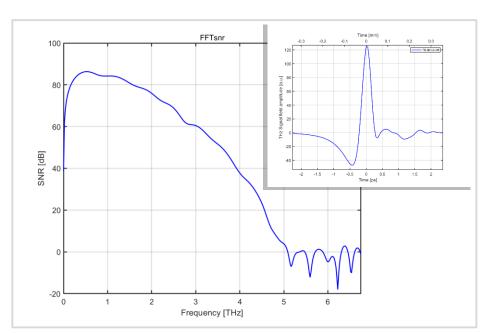

Product details

- Photoconductive probe-tip with integrated overvoltage protection optimized for pulsed excitation
- Mount for variable probe orientation
- Simple & safe probe removal from the set-up
- Robust probe storage box
- Test certificate & manual

Accessories

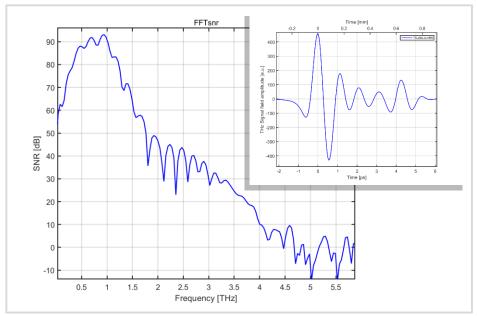
- SMP to SMA/BNC cable connection
- Photo-current amplifier
- Probe-tip dummy structure
- Mounting & focusing units
- Starter Kit

Set-up (exemplary for near-field transmission measurements)

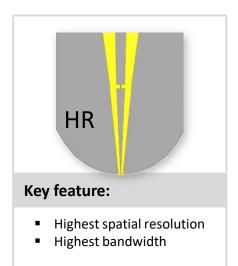


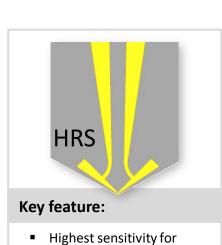
All TD-800-X probes are sensitive to x-oriented field components

 $^{^{(*)}}$ For a focus diameter of circa 20 μm , bias voltage 1 V , average optical excitation power 3 mW.


TeraSpike TD-800-X

Time-domain measurement data (HR)*




^{*} Measured with TeraCube Scientific M2

Terahertz measurement data (HRS)*

^{*} Measured with TeraCube Scientific M2

Highest sensitivity for 0.5 THz < f < 1.3 THz

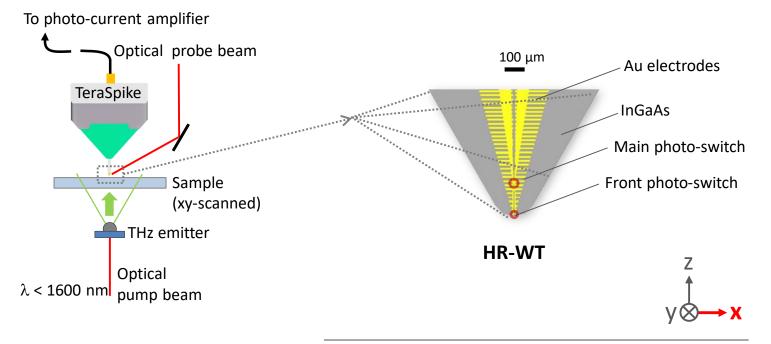
Transversal field microprobes

TeraSpike TD-1550-X-HR-WT

Technical data

TeraSpike TD-1550-X-	HR-WT	HR-WT-XR
Max. spatial resolution	40μm (20 μm ^(#))	80 μm
PC gap size	1.5 μm	1.5 μm
Dark current @ 1 V Bias	< 4 μΑ	< 4 μΑ
Photocurrent (*)	> 10 μA	> 10 μA
Excitation wavelength	1500 1600 nm	1500 1600 nm
Avg. excitation power	1.5 3 mW	1.5 3 mW
Connection type	SMP	SMP

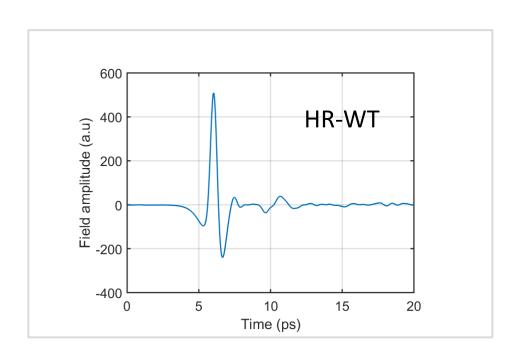
Product details

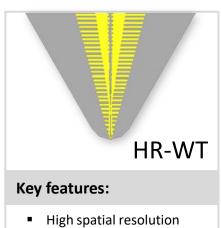

- Photoconductive probe-tip with integrated overvoltage protection optimized for pulsed excitation
- Mount for variable probe orientation
- Simple & safe probe removal from the set-up
- Robust probe storage box
- Test certificate & manual

Accessories

- SMP to SMA/BNC cable connection
- Photo-current amplifier
- Probe-tip dummy structure
- Mounting & focusing units
- Starter Kit

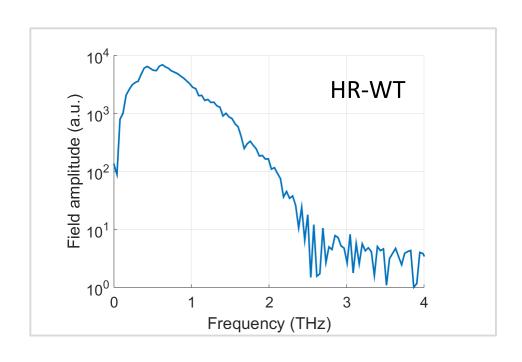
(#) For front-switch instead of main-switch excitation. Front-switch excitation mode is showing reduced SNR.

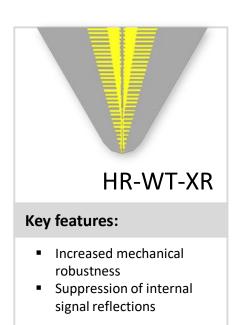

Set-up (exemplary for near-field transmission measurements)



 $^{^{(*)}}$ For a focus diameter of circa 20 μm , bias voltage 1 V , average optical excitation power 2.5 mW.

TeraSpike

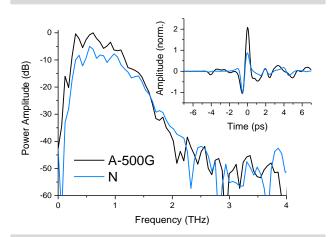

Time-domain measurement data



- Constant Control
- Supression of probeinternal signal reflections

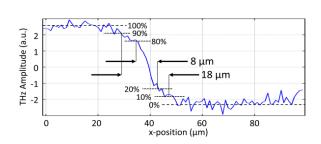
Frequency-domain measurement data

Longitudinal field microprobes

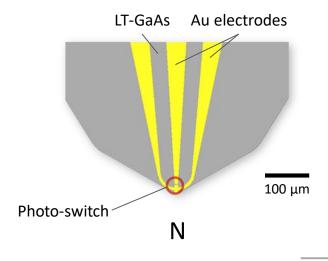

TeraSpike TD-800-Z

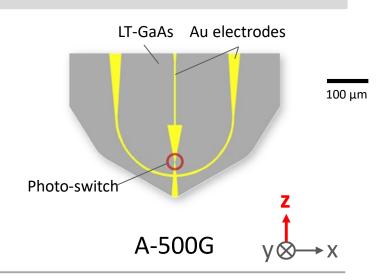
Technical data

TeraSpike TD-800-	A-500G	N / WT	
Max. spatial resolution	8 μm	8 μm	
PC gap size	5 μm	2 μm	
Dark current @ 1 V Bias	< 0.4 nA	< 0.4 nA	
Photocurrent (*)	> 0.2 μA	> 0.1 μA	
Excitation wavelength	700 860 nm	700 860 nm	
Avg. excitation power	0.1 4 mW	0.1 4 mW	
Connection type	SMP	SMP	


 $^{^{(*)}}$ For a focus diameter of circa 20 $\mu m,$ bias voltage 1 V , average optical excitation power 3 mW.

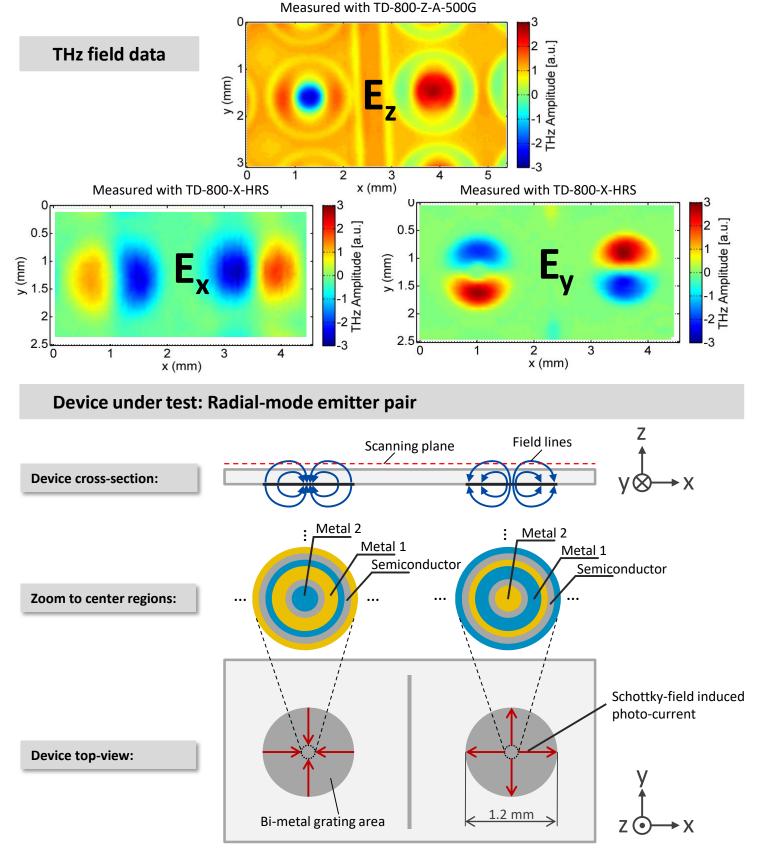
Time-domain (FFT) data




Spatial resolution

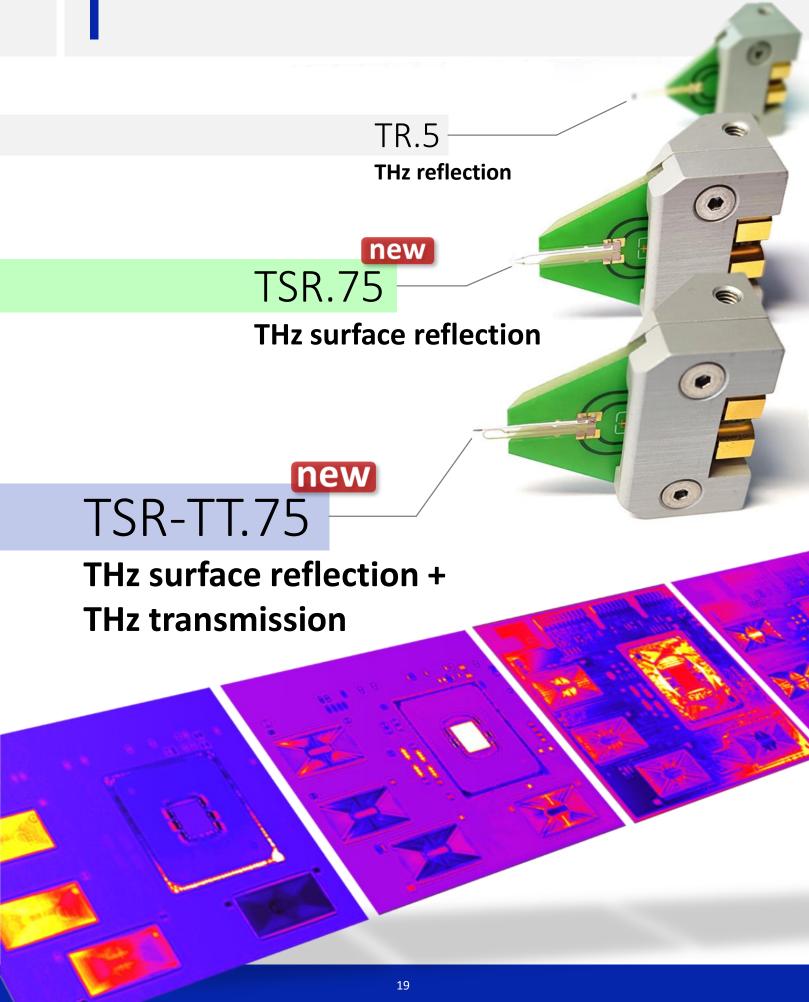
THz z-field scan across test structure

Tip design options

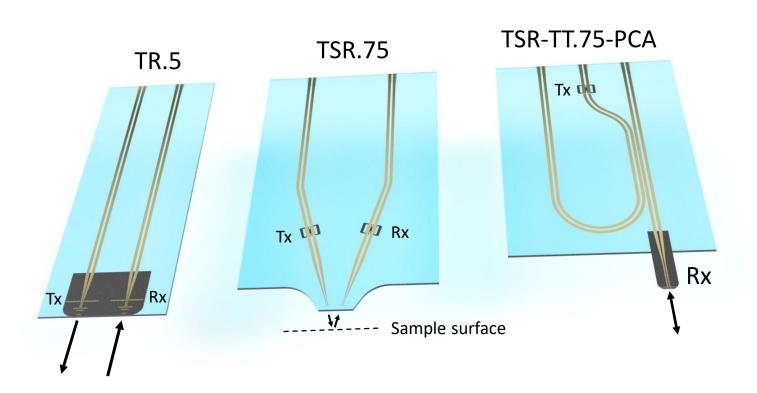


All TD-800-Z probes are sensitive to z-oriented field components

Measurement example:


3D vector field mapping

Pair of radial-mode THz emitters based on planar bi-metal gratings

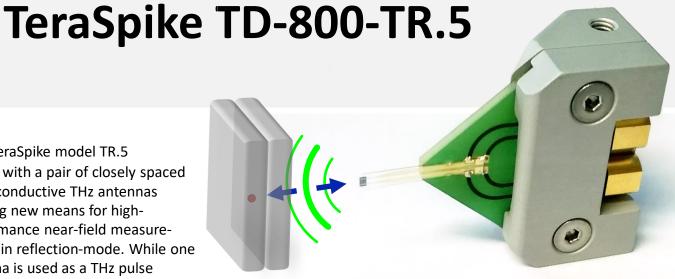

TeraSpike transceivers

TR.5, TSR.75 and TSR-TT.75

CPS-based THz-design

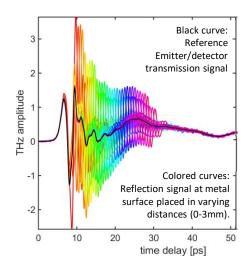
Front-end probe schematics

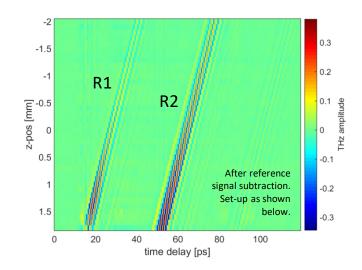
Comparison chart

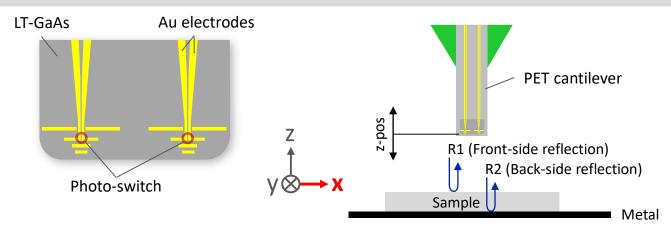

Model	Operation mode	# of Ant.	Incidence angle [deg]	Band- width [THz]	Spatial Resol. [μm]
TD-800-TR.5	Reflection	2	0	1.5	250
TD-800-TSR.75 -PCS10-50	Reflection	2	15	3	100
TD-800-TSR-TT.75-PCA -PCS10-50	Reflection and Transmission	1	0	2	40

Reflexion-mode near-field transceiver

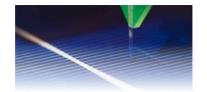
THE TeraSpike model TR.5 comes with a pair of closely spaced photoconductive THz antennas offering new means for highperformance near-field measure-


ments in reflection-mode. While one

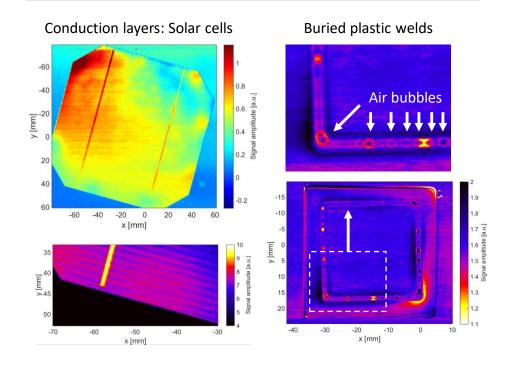

antenna is used as a THz pulse


generator, the other antenna is used as the detector. The slim transceiver probe is taking advantage of Protemics' proprietary "wave-trap" design for the suppression of probe-internal reflection signals as well as the XR-type flexible PET cantilever design for increased mechanical robustness. In contrast to standard reflection-mode approaches based on far-field emitter/detector components the new near-field transceiver probe provides access to subwavelength-resolution and shortest THz transmissions paths.

Time-domain measurement examples



Tip design and set-up


Terahertz sensor head solution TD-800-TR.5 for

Non-destructive Testing

Reflection imaging examples

Technical data

TeraSpike TD-800-	TR.5	
Dark current @ 1 V Bias	< 1.5 nA	
Photocurrent (*)	> 0.5 μA	
Excitation wavelength	700 860 nm	
Avg. excitation power	0.1 4 mW	
Connection type	2x SMP	

Key benefits

- Includes THz emitter and detector
- Reflection-mode measurements
- Ideal for opaque or bulky samples not measurable in transmission-mode
- Ideal for large scanning areas using moving probe instead of moving sample set-ups

Product details

- Photoconductive probe-tip with integrated overvoltage protections optimized for pulsed excitation
- Mount for variable probe orientation
- Simple & safe probe removal from the set-up
- Robust probe storage box
- Test certificate & manual

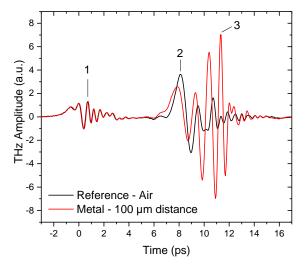
Accessories

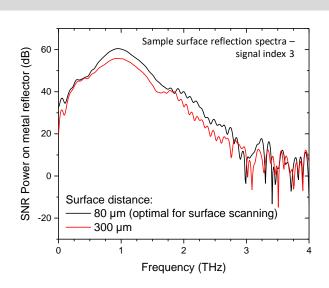
- SMP to SMA/BNC cable connection
- Photo-current amplifier
- Probe-tip dummy structure
- Mounting & focusing units
- Starter Kit

^(*) For a focus diameter of circa 30 μm, bias voltage 1 V, average optical excitation power 3 mW.

Reflexion-mode near-field transceiver

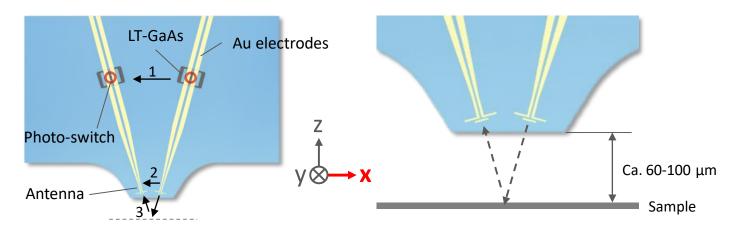
TeraSpike TD-800-TSR.75


THE new TeraSpike model TSR.75 features a pair of photoconductive THz antennas optimized for **surface-near reflection-mode** operation.


The beam incidence angle established by the orientation of the integrated antennas is 15°. As for the TR.5 model one antenna is used as a THz pulse generator, the other antenna is used

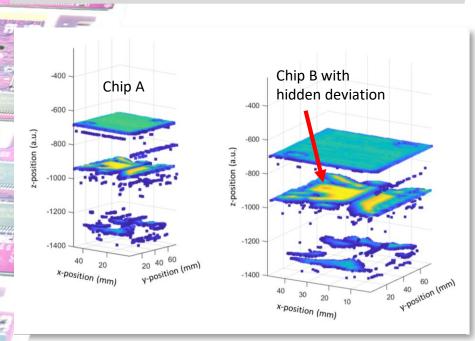
as the detector. The TSR is also taking advantage of Protemics' proprietary

"wave-trap" design for the suppression of probe-internal reflection signals as well as the XR-type flexible cantilever design for increased mechanical robustness. In contrast to standard reflection-mode approaches based on far-field emitter/detector components Protemics near-field transceiver probe provides access to sub-wavelength-resolution and shortest THz transmissions paths.


Time- & Frequency-domain response

Time-domain signal index: 1 – Internal transmission, 2 – Antenna-Antenna coupling, 3 – Sample surface reflection (see also scheme below). Applied averaging factor: 80

Tip design and set-up



Terahertz microprobe solution for

Surface-near volume inspection

*Sample ICs courtesy of Dr. Asadi's group, Florida Institute for Cybersecurity Research (FICS)

Application example: IC authenticity verification*

Stacked interface and buried structure localization based on the software package **Teraloc** - optimized for TeraSpike-probes.

Technical data

TeraSpike TD-800-	TRS.75-PCS10-50	
Dark current @ 1 V Bias	< 10 nA (typ. <1.5 nA)	
Photocurrent (*)	> 0.1 μA (typ. >0.25 μA)	
Excitation wavelength	700 860 nm	
Avg. excitation power	0.1 3 mW	
Connection type	2x SMP	

Key benefits

- Includes THz emitter and detector
- Reflection-mode measurements
- Ideal for opaque or bulky samples not measurable in transmission-mode
- Ideal for large scanning areas using moving probe instead of moving sample set-ups

Product details

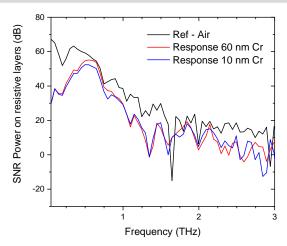
- Photoconductive probe-tip with integrated overvoltage protections optimized for pulsed excitation
- Mount for variable probe orientation
- Simple & safe probe removal from the set-up
- Robust probe storage box
- Test certificate & manual

Accessories

- SMP to SMA/BNC cable connection
- Photo-current amplifier
- Probe-tip dummy structure
- Mounting & focusing units
- Starter Kit

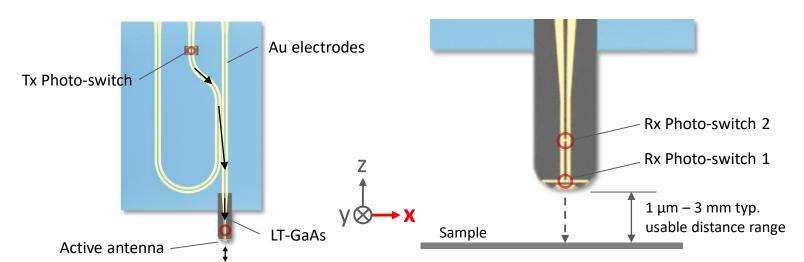
^(*) For a focus diameter of circa 30 μ m, bias voltage 1 V, average optical excitation power 3 mW. The recommended Tx bias voltage during THz measurements is 9V.

Reflexion-mode near-field transceiver

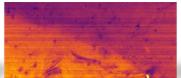


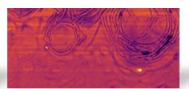
TeraSpike TD-800-TSR-TT.75

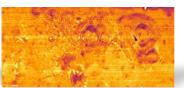
THE new TeraSpike model TSR-TT.75 is based on our patent pending design (Patent application DE102020002735A1) featuring a single front-end antenna for reflection- and transmission-mode operation. The probe enables a beam incidence in surface-normal direction. THz signals for reflection-mode operation are feeded from a dc-decoupled emitter switch to the antenna through a broad-band directional coupler element. Both, front-end antenna and the emitter switch are based on LT-GaAs. The TSR-TT is also taking advantage of Protemics' proprietary "wave-trap" design for the suppression of probe-internal reflection signals as well as optionally the XR-type flexible cantilever design for increased mechanical robustness. Thanks to the single antenna design the TSR-TT is offering the highest spatial resolution of all reflection-mode probes in our product family.


Time- and frequency-domain measurement examples

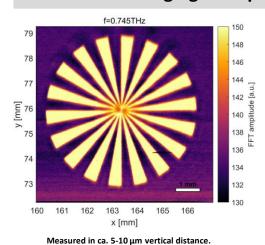
Measured at Siemens-star on test target P-TTT-2-1200. Response signals are subtracted by Ref-Air signal measured without sample. Applied averaging factor: 25 - Rx photo-switch 1.

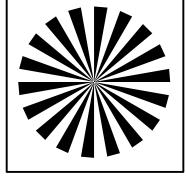

Tip design and set-up




Terahertz transceiver TD-800-TSR-TT.75 for

High-resolution surface imaging





Reflection imaging examples

Siemens star on test target: P-TTT-2-1200 (Protemics)

Key benefits

- Includes THz emitter and detector
- Reflection- and transmissionmode measurements
- Ideal for opaque or bulky samples not measurable in transmission-mode
- Ideal for large scanning areas using moving probe instead of moving sample set-ups

Technical data

TeraSpike TD-800-	TRS-TT.75-PCA-PCS10-50	
Dark current @ 1 V Bias	< 10 nA (typ. <1.5 nA)	
Photocurrent (*)	> 0.1 μA (typ. >0.3 μA)	
Excitation wavelength	700 860 nm	
Avg. excitation power	0.1 3 mW	
Connection type	2x SMP	

Operation mode	# of Ant.	Incidence angle [deg]	Band- width [THz]	Spatial Resol. [μm]
Refl. and Transm.	1	0	2	40

Product details

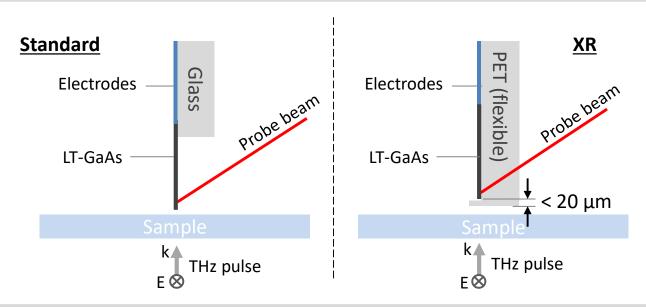
- Photoconductive probe-tip with integrated overvoltage protections optimized for pulsed excitation
- Mount for variable probe orientation
- Simple & safe probe removal from the set-up
- Robust probe storage box
- Test certificate & manual

Accessories

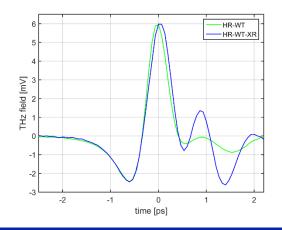
- SMP to SMA/BNC cable connection
- Photo-current amplifier
- Probe-tip dummy structure
- Mounting & focusing units
- Starter Kit

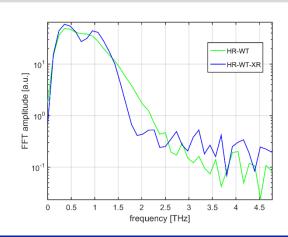
 $^{^{(*)}}$ For a focus diameter of circa 30 μ m, bias voltage 1 V, average optical excitation power 3 mW. The recommended Tx bias voltage during THz measurements is 9V.

Extra rugged design


TeraSpike XR-option

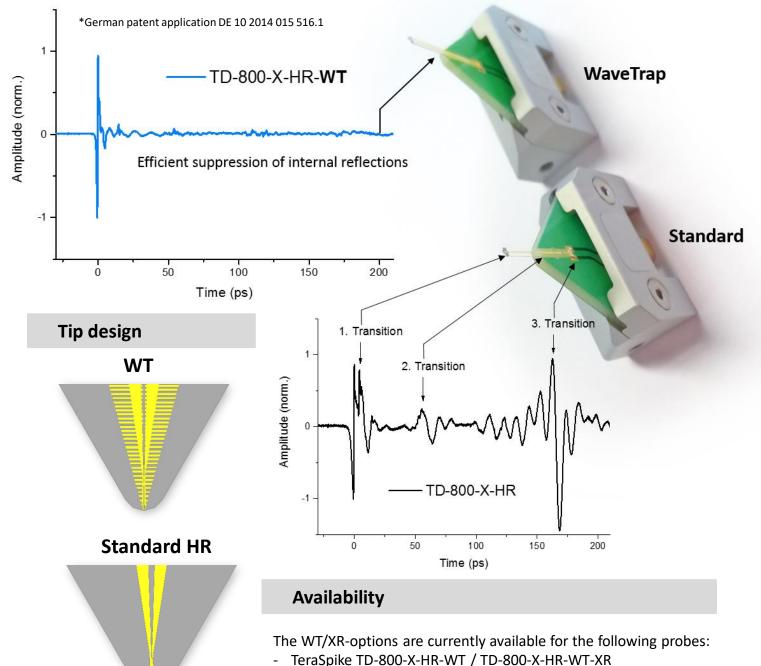
THE standard design of the **TeraSpike** probe is optimized for highest spatial resolution, lowest field invasiveness and highest sensitivity. This is achieved through the free-standing semiconductor-based cantilever microstructure containing the active field sensor elements. The mechanical robustness of this standard design matches the requirements of long-term application in well controlled and automated systems such as the **TeraCube Scientific** allowing also pointed sample contact.


For applications in rougher environments or where the sample distance is more difficult to control the new XR-design is an excellent choice with drastically further increased mechanical robustness with only moderate loss of spatial resolution and sensitivity.



Comparison of cross-section designs: Standard vs. -XR option

Time- and frequency-domain response: Standard vs. -XR



Integrated absorber design ("wavetrap")

TeraSpike WT-option

TERASPIKE near-field probes are used under different excitation conditions. Some might generate THz modes which are able to propagate along the internal electrodes of the probe. So far, these modes were observed in terms of reflection signals in the recorded time-domain transients.

Protemics has developed a new patent pending design* called "wavetrap" which is effectively slowing down and absorbing such probe-internal THz signal transmission.

TeraSpike TD-1550-Y-BF-XR

TeraSpike TD-800-Z-WT / TD-800-Z-WT-XR

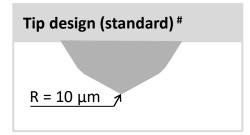
TeraSpike TD-1550-X-HR-WT / TD-1550-X-HR-WT-XR

Bias-free THz pulse generation probe

TeraSpike TD-1550-Y-BF

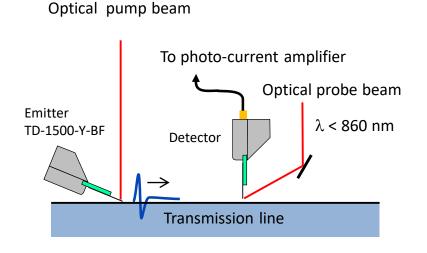
Technical data

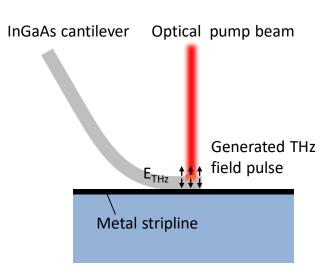
TeraSpike TD-1550-Y	-BF
Pulse rise time	<1 ps (down to 0.4 ps)
Bandwidth*	0.01 2.5 THz
Excitation wavelength	700 1600 nm (<860nm recommended)
Avg. excitation power	0.1 4 mW
Cantilever material	InGaAs (n-type)
Lateral tip radius	8 12 μm
Cantilever length	570 600 μm


^{*}For excitation with optical pulses of 90 fs duration.

Product details

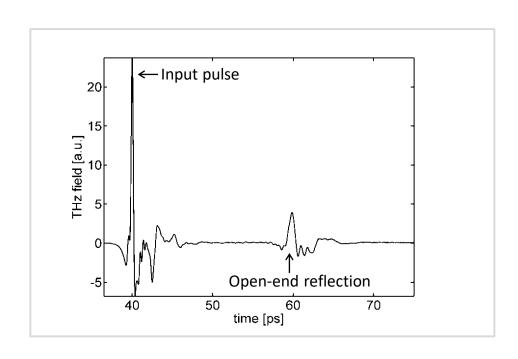
- Probe-tip for surface-near biasfree optical generation of pulsed THz signals
- Mount for variable probe orientation and simple removal from the set-up
- Robust probe storage box
- Test certificate & manual
- Patent pending DE 10 2013 020 216.7


Accessories


- Probe-tip dummy structure
- Mounting & focusing units

Set-up example: Time-domain reflectometry (TDR)

Emitter scheme

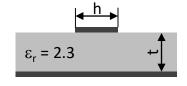


[#]Other designs possible on request.

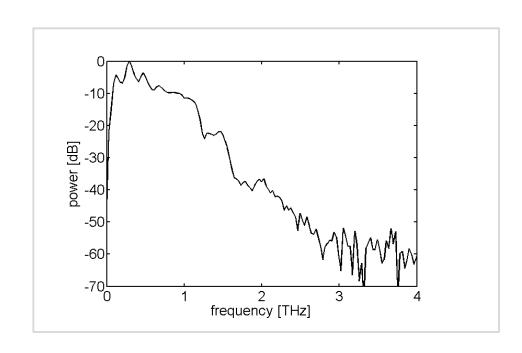
Measurement example using TD-1550-Y-BF:

THz TDR measurement

Time-domain measurement data



Sample data:


Thin-film microstrip line

- $Z_0 = 110 \Omega$
- w = 35 μm
- h = 57 μm

Cross-section:

Frequency-domain measurement data

Set-up:

Applied Laser:

- Wavelength: 780 nm
- Pulse length: 90 fs
- Repetition rate: 100 MHz

Emitter:

- TeraSpike TD-1500-Y-BF
- Optical power: 4 mW

Detector:

- TeraSpike TD-800-X-HRS
- Amplification: 10⁸ V/A
- Optical power: 3 mW

THz microprobe series

TeraSpike

Protemics GmbHOtto-Blumenthal-Str. 25
52074 Aachen
Germany

www.protemics.com info@protemics.com Phone: +49 241 8867 140 Fax: +49 241 8867 560

Bias-free Terahertz emitter

TeraBlast

Background

THE new bias-free Terahertz emitter series TeraBlast from Protemics are optically pumped THz sources which can be used with a wide range of femtosecond laser sources (such as low power oscillators or amplified lasers with wavelengths in the range of 700..1600 nm).

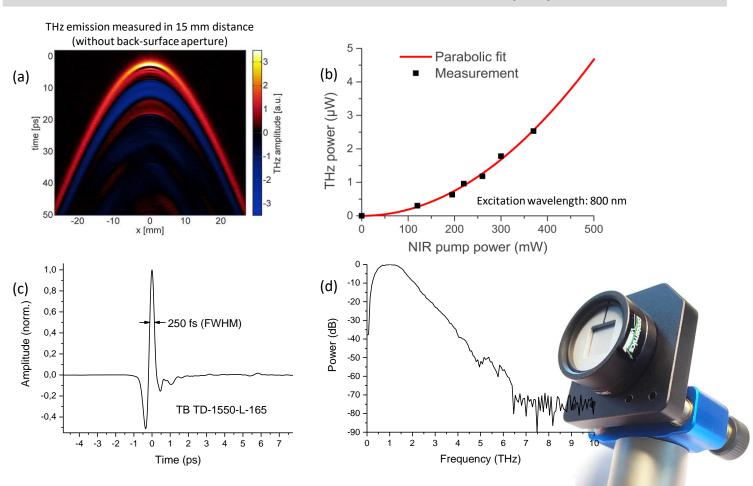
They are ideally suited and tested for near-field imaging applications including TeraSpike micro-probe operation. The TeraBlast is also a great emitter for classic far-field spectroscopy and other THz applications.

Technical data

TeraBlast TD-1550-L-165	Standard	-AR ^(a)
Excitation wavelength range	700 1600 nm	
Typ. average excitation power range	5 mW 1000 mW	
Average THz emission power	> 2.5 μW ^(b)	> 1.75 μW
Active area diameter	10 mm ^(c)	
Adapter dimension (Outer diameter)	1/2 inch	

- (a) With THz anti-reflection coating on out-put surface.
- (b) Measured with pyroelectric detector (Spectrum Detector Inc. SPI-D-62-THz) for 370 mW optical pump power.
- (c) Larger active areas possible. Please request!

Key benefits


- Recommended THz source for TeraSpike microprobe operation
- High emission power
- Patent pending design (DE102012010926 A1)
- Virtually no alignment or focusing effort
- Can be used as a point source or array emitter
- Linearly polarized emission
- Extremely robust due to biasfree operation
- No device failure on local shortcut defects
- No dark current
- No parasitic off-set signal generation in lock-in detection schemes

Protemics GmbH Otto-Blumenthal-Str. 25 52074 Aachen Germany www.protemics.com info@protemics.com Phone: +49 241 8867 140 Fax: +49 241 8867 560

Bias-free Terahertz emitter **TeraBlast**

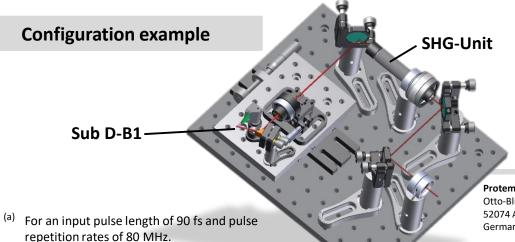
Exemplary measurement data

(a) Measured with TeraSpike TD-800-X-HRS, (b) Measured with SPI-D-62-THz from Spectrum Detector Inc. (c) & (d) Far-field transmission through atmosphere measured with a femtosecond laser from Laser Quantum ("taccor") and electrooptic detection in a 400-µm-thick GaP crystal using ASOPS based time-domain spectroscopy.

IR-to-NIR light conversion modul

SHG-Unit

THE new SHG-Unit from Protemics is an easy to operate and very efficient solution to convert IR light from cost-efficient femtosecond fiber-lasers into NIR light for the high-efficiency excitation of our LT-GaAs-based TeraSpike microprobes and TeraBlast emitters.

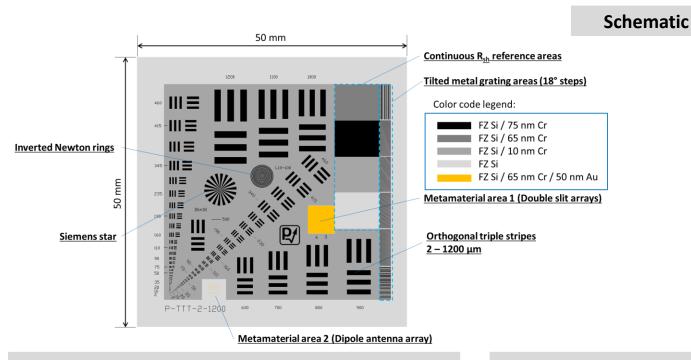

Schematic Adjustment ring Color filter (removable) Aperture NIR (λ = 1500nm .. 1600 nm) Free-space or fiber-coupled beam Free-space beam

Technical data

SHG-Unit TD-1550-NLO (-FS/-FC)	
Input wavelength range	1500 1600 nm
Typ. average input power range	30 mW 200 mW
Typ. power conversion efficiency (a)	10 50 % ^(a)
Min. aperture diameter	ca. 6 mm
Dimensions (I x d)	120 mm x 45 mm

Key benefits

- Recommended for TeraSpike microprobe operation with IR femtosecond lasers
- High power conversion efficiency
- Passive and robust design
- Short warm-up time: (10-15 min)
- Can be configured for freespace (-FS) or fiber-coupled input beams (-FC)
- Easy to use and integrate



Protemics GmbH Otto-Blumenthal-Str. 25 52074 Aachen Germany www.protemics.com info@protemics.com Phone: +49 241 8867 140 Fax: +49 241 8867 560

Terahertz Test Target

P-TTT-2-1200

THE test target P-TTT-2-1200 has been specially developed for the characterization of Terahertz imaging systems. Featuring structures and areas from 2 μ m up to 8 mm of lateral size it is suited for standard diffraction-limited systems as well as near-field imaging systems with sub-wavelength resolution.

Technical data

P-TTT-2-1200	
Substrate material	High-resistivity FZ silicon, 2-side polished
Substrate Resistivity	> 10 kOhm cm
Target overall size	2" x 2" (50 mm x 50 mm)
Substrate thickness	525 μm
Coating material	Cr, Au
Coating thickness	Cr: 10 nm, 65 nm and 75 nm Au: 50 nm
Orthogonal pairs of triple stripes	2 – 1200 μm wide lines & spaces 45° rotated for 2 - 460 μm wide line & spaces
Siemens star	6 mm diameter, 18 elements
Inverted Newton rings	5.6 mm max. diameter, 10–500 μm ring widths
Continuous R _{sh} Reference areas	6.7 mm x 8.3 mm
Tilted metal grating areas	2 mm x 6.7 mm, 0°, 18°, 36°, 54°, 72°, 90°
Bow-tie array metamaterial	300 μm length, 5μm gap
Double slit array metamaterial	3 μm and 6 μm slit width and spaces

Key benefits

- Optimized for THz far- and near-field imaging system evaluation with semitransparent thin-film conductor structures
- Applicable for sub-wavelength and standard diffraction-limited resolution (2 μm – 1.2 mm)
- Includes metamaterial structures with local field enhancement specially useful for near-field system evaluation
- Also applicable for contrast evaluation and referencing of sheet resistance imaging systems

Advanced low-noise current amplifier

TeraSpike Companion

THE new TeraSpike Companion is the first commercially available low-noise amplifier specially designed and optimized for THz timedomain spectroscopy applications based on photoconductive detectors and emitters including of course the full line of Protemics TeraSpike (TS) microprobes. In contrast to conventional current amplifiers, the Companion offers important additional functions that are typically required for THz-TDS-related tasks, including e.g. Connections for Tx and Rx devices, an optical alignment mode, switchable bias function for all inputs as well as a fully electronic control for system integration. A fine selection of amplification in steps of a fifth of a decade is included for optimal utilization of the maximum possible signal-to-noise ratio in any THz system. As required for operation with fastscanning THz TDS modules (e.g. TeraFlash Pro, Toptica), it also offers a comfortable bandwidth reserve that ensures unadulterated THz signal detection up to the highest amplification range.

Description

Key features:

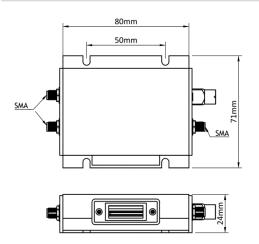
- Two input channels
- Optical alignment & THz detection mode
- Gain variable in 0.2x10^x steps
- 40 kHz bandwidth for every gain
- Local and remote control options

Applications e.g.:

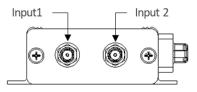
- Protemics near-field probe operation including transceiver, emitter or detector probes
- General Terahertz photo-conductive antenna operation

Model LNA-40k-8E8

Trans-impedance gain [V/A]*	$1x10^68x10^8$, switchable in steps of 0.2 x 10^x
-3-dB-Bandwidth [kHz]*	40, for all gain settings. Switchable to 0.4
Amplifier output voltage [V]	±12
Output impedance	Open
Max. output current [mA]	±40
External bias supply for THz device inputs	±12 V, max. 120 mA
Indicator LED	On: Overload, Off: Normal operation
Power supply voltage	±5 V ±14 V (max.), ±12 V (recommended)
Power supply current	Typ. ±30 mA
Weight [g]	120
Operating temperature range	070°C

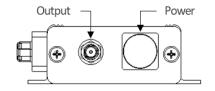

^{*}Can be customized on request. For further information please contact us on <u>info@protemics.com</u>

Designed for THz applications LNA-40k-8E8

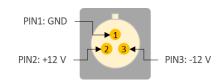

Block diagram

28 Input & Output Control channel

Dimensions



Interface description

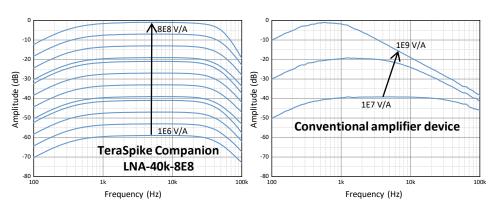

Input side view

Input1: SMA, isolated, jack female Input2: SMA, isolated, jack female Detector bias output: shield of the input1 SMA & input2 SMA

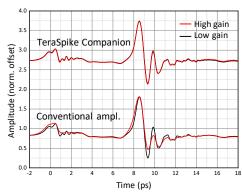
Output side view

Output: SMA, jack female

Power supply connector


Socket: Lemo series 0B, 3-pin fixed

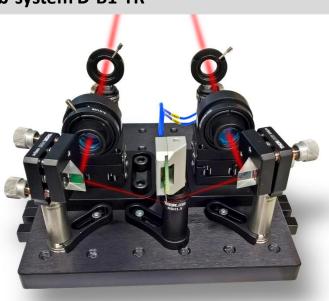
socket


Plug: Matching parts FGG.0B.303.CLAD52

Pin 1: GND Pin 2: +12 V Pin 3: -12 V

Gain spectrum

THz TDS application*

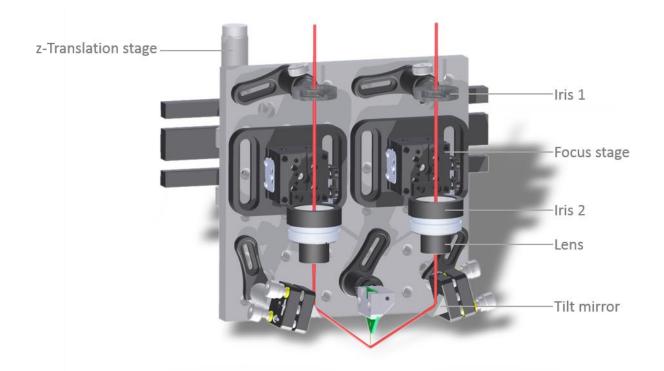


^{*} Measured with TeraSpike TD-800-TSR-TT.75-PCA-PCS-10-50

Integration components

Sub-system modules

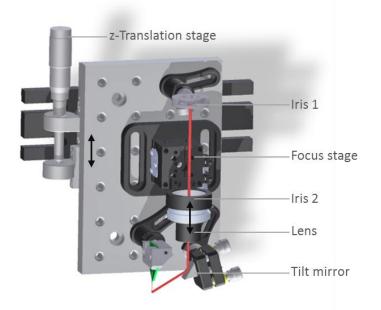
Sub-system D-B1-TR



Description

Mini-board set-up with prealigned optomechanical components for the transceiver probe TeraSpike TD-800-TR.5.

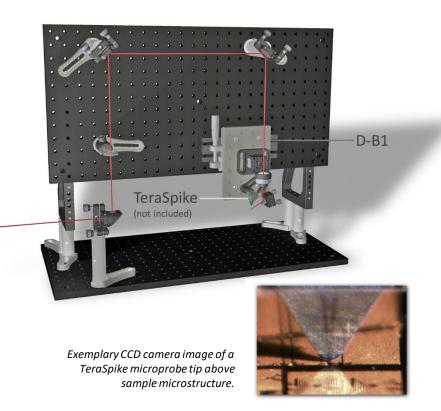
Functions:


- Supports two optical beams for emitter and detector switch excitation
- Probe-tip mounts
- Manual beam-to-tip focusing
- Manual beam-to-tip alignment
- Manual probe-tip height variation

Integration components

Sub-system modules

Sub-system D-B1


Description

Mini-board set-up with pre-aligned optomechanical components for the system integration of TeraSpike microprobes.

Functions:

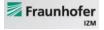
- Microprobe mount
- Manual beam-to-microprobe focusing
- Manual beam-to- microprobe alignment
- Manual microprobe height variation

Sub-system D-B2

Description

Multi-board set-up with pre-aligned optomechanical components.

Functions:

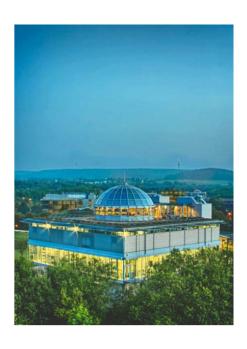

- Motherboard including sub-system D-B1 in customized height
- Assembly brackets
- 2 alignment apertures
- 2 tilt mirrors
- Extendable with CCD camera and distance sensor

Option (-CAM):

 Integrated CCD microscope camera system with variable illumination for monitoring of probe-tip to sample surface approximation and sample positioning

Terahertz microprobing **Solutions**

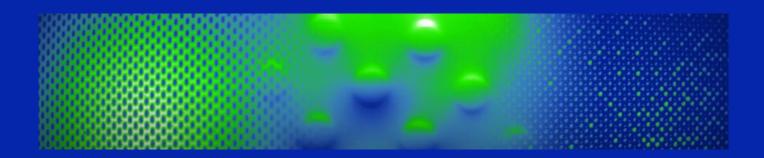
References



Applications

Protemics GmbH Otto-Blumenthal-Str. 25 D-52074 Aachen Germany

www.protemics.com info@protemics.com Phone: +49 241 8867 140


Fax: +49 241 8867 560

Products & Services Order information

Order informa	tion	
Scanning systems		
TeraCube	THz near-field imaging system	
	Scientific	
Terahertz microprobes detectors		
TeraSpike	THz PC probe-tip with SMP plug	
	Series: TD-800-X- (Type: HR or HRS)	
	Series: TD-800-Z- (Type: A-500G or N)	
Starter Kit	Includes: TeraSpike microprobe, TS Phantom, TS Cable, mount	
Terahertz microprobe emitters		
TeraSpike	In GaAs cantilever microprobe	
	Series: TD-1550-Y-BF	
Terahertz microprobe transceiver		
TeraSpike	THz PC antenna pair probe-tip with SMP plugs	
	Series: TD-800-TR.5	
Large-area bias-free Ter	rahertz emitters	
TeraBlast	TD-1550-L-165	
	Option (-HPF): Back-surface high-pass filter	
	Option (-AR): THz anti-reflection coating	
Sub-system modules		
D-B1	Axial positioning, focusing, alignment unit	
D-B2	Vertical board base unit including D-B1	
	Option (-CAM): Integrated microscope camera	
Current amplifiers		
DLPCA-200	Variable gain current amplifier with 50 kHz Bandwidth @ 10 ⁷ V/A amplification	
DHPCA-100	Variable gain current amplifier with 220 kHz Bandwidth @ 10 ⁷ V/A amplification	
Accessory		
TeraSpike Phantom	Dummy probe-tip device	
TS Cable	SMP to SMA/BNC probe connection cable	

Service offer

- Not sure how to integrate TeraSpike into your system or do you have other questions? We are happy to advise you!
- Custom microprobe designs are possible on request.
- We offer measurement services including detailed data analysis reports for your samples in our laboratories.
- On-site installation support
- Training courses
- Component repair and maintenance services

TERAHERTZ MICROPROBING SOLUTIONS

