Advances In The Structuring And Patterning Of Single-Molecule Magnets On Surfaces

J. Gómez-Segura¹, Ruiz-Molina¹, M. Cavallini², M. Massi², M. Mas-Torrent¹, C. Rovira¹, F. Biscarini², and <u>J. Veciana</u>.¹

Single-molecule magnets (SMM), derived from Mn_{12} molecules, have a large high-spin ground state (S = 10) with appreciable magnetic anisotropy resulting in a barrier for the spin reversal. As a consequence, an interesting magnetic bistability, due to individual molecules rather than to long-range ordering, is observed. Such molecules may therefore become materials with a potential impact in ultra-high density magnetic storage and quantum computation, provided they can be organized into addressable domains.

Here we present new methods, based on unconventional parallel lithography, for patterning Mn_{12} SMMs on a large area and with nanometer resolution on surfaces with different nature. The first method uses a stamp-controlled deposition of molecules from a solution and exploits the competing interactions between the molecules and a substrate permitting the nanopatterning of Mn_{12} molecules on the surface. In the second method, a Mn_{12} derivative has been used to fabricate patterns of magnetic bits on a polycarbonate polymeric surface by a modified micro-transfer molding with a subsequent solvent exposure. This system can be used effectively as a permanent information medium with magnetic readout. Finally a method that permit the structuring of Mn_{12} molecules in the form of nano-objects will be presented.

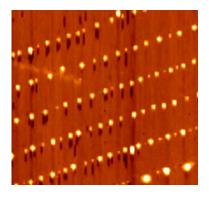


Figure. Left: Isolated Mn_{12} SMM appearing at a polymeric surface. Right: Patterned surface with aggregates of Mn_{12} SMM.

 ¹ Institut de Ciencia de Materials de Barcelona (C.S.I.C.), Campus Universitari de Bellaterra, 08193 Cerdanyola, Spain.
² CNR - ISMN, Via P. Gobetti 101, I-40129 Bologna, Italy.

M. Cavallini, J. Gómez, D. Ruiz-Molina, F. Biscarini, J. Veciana. *Nano Lett.* **2003**, *3*, 1527.
M. Cavallini, J. Gómez, D. Ruiz-Molina, F. Biscarini, C. Albonetti, C. Rovira, J. Veciana, F. Biscarini, *Angew. Chem. Int. Ed.*, **2005**, *44*, 888.