Controlling photon emitters on nanometer & femtosecond scale

Niek van Hulst

ICFO Institute of Photonic Sciences Mediterranean Technology Park Barcelona - Spain

NanoPhotonics: where "fs" and "nm" meet

[fs] phase controlled excitation of single molecules "Single Molecule Coherent Control"

[nm] phase controlled driving of a nano-antenna "Coherent control of antennas"

Detection of single molecule dynamics

30 x 30 μ m², 100 ms/frame

Diffusion, rotation, blinking, bleaching: hours, sec, ms, µs.....

Tools for ultrafast (fs) phase controlled excitation

In-focus spectral phase control and compensation

Broad band excitation in visible: 610 – 730 nm, 14 fs Diffraction limited, 1.3NA objective

MIIPS - Multiphoton Intrapulse Interference Phase Scan

V. V. Lozovoy, I. Pastirk, M. Dantus, Multiphoton intrapulse interference, Optics Letters 29, 775-777 (2004).

Beyond the ensemble

2

S.

Delay 21 fs 0

bleaching blinking heterogeneity

- First phase controlled excitation of a Single Molecule
- At room temperature, on large molecules
- Single Molecular vibrational wavepacket, ~ 35 fs period
- Single Molecular wavepacket group velocity
- Starting phase differs between molecules: heterogeneity
- Decoherence time 20 50 fs

<u>Outlook</u>

- Multiphoton excitation
- Coupled systems, energy transfer
- Biosystems....

What's NANO about antennas ?

Near-field, sub- $\lambda \leftarrow \lambda \rightarrow$ Far field, many λ

E-beam lithography, focussed ion beam milling

¿ Driving Antennas at optical frequencies ?

Nano-antennas on surface

Antenna probe

A resonant nano-antenna light source

Taminiau et al, Nano Letters 7, 28 (2007); Frey et al, Phys. Rev. Lett. 93, 200801 (2004)

The antenna field is localized within 25 nm

Taminiau, Moerland, Segerink, Kuipers, van Hulst, Nano Letters 7, 28 (2007)

Tweaking the antenna resonance

Fabricated antenna lengths 30 to 170 nm, radius ~20 nm

Antenna "Efficiency": Antenna signal / Aperture signal

Monopole resonance for ~ 80 nm length Al (λ=514 nm)

Limited quality factor ~4

Sharper antennas ??

Taminiau et al, IEEE Trans. Antennas & Propagation 55, 3010 (2007)

λ /2 dipole resonance and antenna length

Multipole and gap resonances of symmetric antenna

3/2 λ resonance for Au bar of L = 500 nm, at λ = 730 nm

Ghenuche, Cherukulappurath, Taminiau, van Hulst, Quidant, PRL 101, 116805 (2008)

The effect of polarization

2

15

Data: Daan Brinks

0

The phase of the antenna resonance

0

Phase controlled driving of nanoantenna? Spatial response?

Calculation Tim Taminiau, Finite Integration (Microwave Studio)

0

- Shifting phase profile maps antenna resonance
- Phase controlled switching of antenna hotspots

<u>Outlook</u>

- Antenna coupled to single quantum system
- Controlled local excitation of molecules
- Control of single photon emission (direction, decay time)

www.ICFO.es

Players at ICFO

Fernando Stefani

Daan **Brinks**

Florian

Tim Taminiau

Richard Hildner

Lars

Alberto Gonzalez-Curto

Martin Kuttge

Riccardo Sapienza

Muchas gracias

Mila esker

ICFO – Institute of Photonic Sciences Castelldefels - Barcelona - Spain www.icfo.es