

Giant Enhanced Diffusion of Nanoparticles in Optical Vortex Fields

Juan José Sáenz

<u>MoLE ("Moving Light & Electrons") group</u> (www.uam.es/mole)

[Universidad Autónoma de Madrid]

Silvia Albaladejo Manuel I. Marqués Juanjo Sáenz (UAM-Mole, Madrid, Spain) (Institute d'Optique, CNRS, Paris, France) Marine Laroche (Fribourg Univ., Switzerland) Frank Scheffold Ivar Zapata Jose Maria R. Parrondo Fernando Sols (Univ. Complutense Madrid, Spain)

(*) Donostia International Physics Center (DIPC)

Phys. Rev. Lett. **102**, 113602 (2009) Phys. Rev. Lett. **103**, 130601 (2009) NanoLett. **9**, 3527 (2009)

₩ •

• Introduction Optical Forces on small particles.

 Giant enhanced diffusion of gold nanoparticles on optical vortex lattices

Deterministic Ratchet from Stationary Light vortex Fields.

Scattering from a small particle

- Electric dipole

- Polarizability

 $\vec{p} = \varepsilon_0 \varepsilon_h \alpha E_0$

 $k \operatorname{Im}\{\alpha\} = \sigma$ $\operatorname{Re}\{\alpha\} \approx \alpha_0$

$$\operatorname{Im}\left\{\frac{1}{\alpha}\right\} = -\frac{k^3}{6\pi} = -k^2 \operatorname{Im}\left\{G_{ii}(0,0)\right\}$$

Let us consider plane wave incidence

Scattering Cross Section = (Scattered Power)/(Inc. Power/area)

$$\Leftrightarrow \sigma_{scat} = k^3 |\alpha|^2 \operatorname{Im} \{G_{ii}(0,0)\} = \frac{k^4}{6\pi} |\alpha|^2$$

Let us consider plane wave incidence

Extinction Cross Section = (Power removed from the beam)/(Inc. Power/area)

Optical Theorem

 $\sigma = k \operatorname{Im} \{ \alpha \}$ Extinction Cross Section In absence of absorption: Transmitted + Reflected Power = Incoming Power $\operatorname{Im} \{ \alpha \} = k^2 |\alpha|^2 \operatorname{Im} \{ G_{ii} \}$

$$\operatorname{Im}\left\{\frac{1}{\alpha}\right\} = -k^{2} \operatorname{Im}\left\{G_{ii}(0,0)\right\} \quad \Leftrightarrow \sigma = k^{3} |\alpha|^{2} \operatorname{Im}\left\{G_{ii}(0,0)\right\} = \frac{k^{4}}{6\pi} |\alpha|^{2}$$

If α is real: Power is not conserved

Optical Forces For small particles $\vec{F} = \frac{d}{dt}\vec{P}_{mec} = \int \left(\rho\vec{E} + \vec{J}\times\vec{B}\right)dV$ $\left\langle \vec{F} \right\rangle_{t} = \frac{1}{2} \operatorname{Re} \left\{ \sum_{i} p_{i} \vec{\nabla} E_{i}^{*} \right\} =$ $\langle F \rangle = \operatorname{Re}\left\{\alpha\right\}\left\{\left.\nabla\frac{1}{4}\left|E\right|^{2}\right\} + \sigma\frac{1}{2}\operatorname{Re}\left\{\frac{1}{C}E \times H^{*}\right\}\right\}$ $+ \sigma \frac{1}{2} \operatorname{Re} \left\{ i \frac{\varepsilon_0}{k_0} \left(E \cdot \nabla \right) E^* \right\}$???? icroseres

 $\left\langle \vec{F} \right\rangle_{t} = \frac{1}{2} \operatorname{Re} \left\{ \sum_{i} p_{i} \vec{\nabla} E_{i}^{*} \right\} =$

 $\frac{1}{4}lpha_{0}ec
abla \left|ec{E}_{0}
ight|^{2}$

Polarization

 $rac{1}{c}ig\langleec{S}ig
angle\sigma$

Radiation Pressure

(J.P. Gordon, PRA (73))

(A. Ashkin, PRL (70)) Optical Tweezers

D.G. Grier, Nature (03)

Optical vortex lattice

Optical vortex lattice

$$\mathbf{F}^{(s)} = \Re\{\alpha\}\frac{1}{2}\boldsymbol{\nabla}|E_z|^2 + \sigma\left\{\frac{1}{c}\langle S\rangle^{(s)}\right\}$$

$$\frac{1}{c} \langle S \rangle^{(s)} = c \nabla \times \langle L_O \rangle$$
$$\langle L_O \rangle \equiv \frac{\epsilon_0}{\omega} |E_0|^2 \sin \phi \cos k_0 x \cos k_0 y \mathbf{u}_z$$

L_o => Orbital Angular Momentum

The curl force can be associated to the orbital angular momentum, L_0 arising as a consequence of the rotation of the Poynting vector around the field nodes.

A. Hemmerich and T.W. Hänsch, Phys. Rev. Lett. 70, 410 (1993)

$$H_z(x, y; \omega) = -\epsilon_0 c \frac{2iE_0}{\sqrt{2}} \left(\sin k_0 x + e^{i\phi} \sin k_0 y \right)$$

$$H_z(x,y;\omega) = -\epsilon_0 c \frac{2iE_0}{\sqrt{2}} \left(\sin k_0 x + e^{i\phi} \sin k_0 y\right)$$

$$E_x = \frac{2E_0}{\sqrt{2}} e^{i\phi} \cos k_0 y$$
$$E_y = -\frac{2E_0}{\sqrt{2}} \cos k_0 x.$$

$$F^{(p)} = \Re\{\alpha\} \frac{1}{2} |E_0|^2 \nabla \left(\cos^2 k_0 x + \cos^2 k_0 y\right).$$

Does not depend on the Phase Shift!
CONSERVATIVE!

$$F^{(p)} = \Re\{\alpha\} \frac{1}{2} |E_0|^2 \nabla \left(\cos^2 k_0 x + \cos^2 k_0 y\right).$$

Poynting vector?

$$\frac{1}{c} \langle S \rangle^{(s)} = c \nabla \times \langle L_O \rangle$$
$$\langle L_O \rangle \equiv \frac{\epsilon_0}{\omega} |E_0|^2 \sin \phi \cos k_0 x \cos k_0 y \mathbf{u}_z$$

$$\underbrace{Optical Forces}_{(Maxwell eqs. + Lorentz Force)}$$

$$\left\langle \vec{F} \right\rangle_{e} = \frac{1}{2} \operatorname{Re} \left\{ \sum_{i} p_{i} \vec{\nabla} E_{i}^{*} \right\} = \operatorname{Polarization}$$

$$\left\langle F \right\rangle_{i} = \frac{1}{4} \Re \{\alpha\} \nabla |\mathbf{E}|^{2} + \sigma \frac{1}{2} \Re \left\{ \frac{1}{c} \mathbf{E} \times \mathbf{H}^{*} \right\}$$

$$+ \sigma \frac{1}{2} \Re \left\{ i \frac{\epsilon_{0}}{k_{0}} (\mathbf{E}^{*} \cdot \nabla) \mathbf{E} \right\}$$
Radiation Pressure
$$\int \frac{1}{2} \Re \left\{ i \frac{\epsilon_{0}}{k_{0}} (\mathbf{E}^{*} \cdot \nabla) \mathbf{E} \right\} = \sigma c \nabla \times \left(\frac{\epsilon_{0}}{4\omega i} (\mathbf{E} \times \mathbf{E}^{*}) \right)$$

$$\left\{ L_{S} \right\} = \frac{\epsilon_{0}}{4\omega i} \{ \mathbf{E} \times \mathbf{E}^{*} \}$$
Time averaged spin density!

Microseres 4ω

NanoLightes

$$F^{(p)} = \Re\{\alpha\} \frac{1}{2} |E_0|^2 \nabla \left(\cos^2 k_0 x + \cos^2 k_0 y\right).$$

Poynting vector?

$$\frac{1}{c} \langle S \rangle^{(s)} = c \nabla \times \langle L_O \rangle$$
$$\langle L_O \rangle \equiv \frac{\epsilon_0}{\omega} |E_0|^2 \sin \phi \cos k_0 x \cos k_0 y \, \mathbf{u}_z$$

$$\langle L_S \rangle = - \langle L_O \rangle \equiv \frac{\epsilon_0}{\omega} |E_0|^2 \sin \phi \cos k_0 x \cos k_0 y \, \mathbf{u}_z$$

Gradient force

Scattering force

$$\langle \boldsymbol{F} \rangle = \Re\{\alpha\} \left\{ \boldsymbol{\nabla} \frac{1}{2} \langle |\mathbf{E}|^2 \rangle \right\} + \sigma \left\{ \frac{1}{c} \langle \boldsymbol{S} \rangle \right\} + \sigma \left\{ c \boldsymbol{\nabla} \times \langle \boldsymbol{L}_{\boldsymbol{S}} \rangle \right\}.$$

The scattering force (proportional to the total cross section) can be written as the sum of two contributions:

-the traditional radiation pressure term, proportional to the Poynting vector,
-a curl force associated to the non-uniform distribution of the spin density of the light field.

When the light is linearly polarized the curl term is identically zero.

(S. Albaladejo et al., PRL (2009))

Giant enhanced diffusion of gold nanoparticles on vortex lattices (S. Albaladejo et al., Nano Letters (2009))

Optical vortex lattice

A. Hemmerich and T.W. Hänsch, Phys. Rev. Lett. 68, 1492 (1992)

$$(n/c)P \equiv \varepsilon_0 \varepsilon |E_0|^2/2.$$

$$F_{\phi=0} = 2\alpha'(n/c)P\nabla(\sin kx + \sin ky)^2$$

$$F_{\phi=\pi/2} = 2\alpha'(n/c)P\nabla(\sin^2 kx + \sin^2 ky) + 2\alpha''(n/c)P\nabla \times \{2\cos kx\cos kyu_z\}$$

 $4(n/c)P(\alpha' \sin kx - \alpha'')\cos kx.$

 $\alpha'' > \alpha'$,

NO Stable positions in the system !!!

Gold nanoparticles

$$\alpha_0 = 4\pi\varepsilon_0 a^3 \left(\frac{\varepsilon(\omega) - 1}{\varepsilon(\omega) + 2}\right)$$

$$\alpha = \frac{\alpha_0}{1 - i\frac{k^3}{6\pi}\alpha_0}$$

530 nm

$$m\frac{\mathrm{d}^2 r}{\mathrm{d}t^2} = F(r) - \gamma \frac{\mathrm{d}r}{\mathrm{d}t} + \xi(t)$$

$$\gamma = 6\pi a\eta$$

$$T = 298$$
 K, $\eta = 0.89 \times 10^{-3}$ kg m⁻¹ s⁻¹

$$\langle \xi_i(t)\xi_j(t')\rangle = 2\gamma k_{\rm B}T\delta_{ij}\delta(t-t')$$

Langevin dynamics

50 nm gold nanoparticles in water

$$\langle |x(t) - x(0)|^2 + |y(t) - y(0)|^2 \rangle = \langle r^2 \rangle = 4Dt$$

(S. Albaladejo et al. NanoLett. 2009)

$$D_0 = k_{\rm B} T / \gamma \approx 4.9 \times 10^{-12} \,\mathrm{m}^2 / \mathrm{s}.$$

$$1e-10 = P(x 10^{5} \text{ W/cm}^{2}); \phi = \pi/2$$

$$1e-12 = 0.8$$

$$1e-14 = 0.8$$

$$1e-14 = 0.8$$

$$P(x 10^{5} \text{ W/cm}^{2}); \phi = 0$$

$$1e-16 = 0.8$$

 $\tau \approx 10^{-5} - 10^{-4} \, \mathrm{s}$

 $10^6 - 10^5$ W/cm².

$$D - D_0 \approx \left(\frac{\lambda}{2}\right)^2 \frac{1}{4\tau} \approx 2 \frac{(n/c)\alpha''P}{\gamma} = D_0 2 \frac{(n/c)\alpha''}{k_{\rm B}T} P$$

Microseres

The diffusion constant of a 50 nm gold particle is enhanced by 2 orders of magnitude with respect to thermal diffusion at room temperature (S. Albaladejo et al. NanoLett. 2009)

Stationary Light Fields

(I. Zapata et al. PRL 2009)

2ky/π

b)

2ky/π

From stationary forces of null average we have designed a ratchet system which requires neither noise nor driving.

(I. Zapata etr al. PRL 2009)

