

Applying Magnetic Fields to Carbon-based low **Dimensional Materials:** from Aharonov-Bohm effects to Landau levels

Stephan Roche

CENTRE D'INVESTIGACIÓ EN NANOCIÈNCIA NANOTECNOLOGIA

CAMPUS UAB. BELLATERRA. BARCELONA

OUTLINE of the TALK

INTRODUCTION

Basics of sp² electronic features

Aharonov-Bohm Effect in CNTs

Theory and original controversies
 Magnetic field induced metal-semiconductor transition

Landau levels in CNTs

Fabry-Perot regime Propagative Landau levels and Fermi level pinning

CENTRE D'INVESTIGACIÓ EN NANOCIÈNCIA I NANOTECNOLOGIA

CAMPUS UAB. BELLATERRA. BARCELONA

Graphene (ribbons) & Carbon Nanotubes

$$\vec{\mathcal{C}}_{m,n}$$
 $d_t = \frac{|\vec{\mathcal{C}}_{m,n}|}{\pi}$

Nanotubes: Electronic Properties

Periodic Boundary conditions $-\frac{\pi}{|\vec{T}_{(n,m)}|} \le k_y(=k) \le +\frac{\pi}{|\vec{T}_{(n,m)}|} \quad k_x = \frac{2\pi q}{|\vec{\mathcal{C}}_{(n,m)}|} (q=1,N)$ Symmetry choice $\vec{\mathcal{C}}_{n,n} = n(\vec{a}_1 + \vec{a}_2)$ $\vec{\mathcal{C}}_{n,m} = (3p \pm 1)\vec{a}_1$ E_F=0 $rac{2\pi q}{|\mathcal{C}_h|}$ 6

Remark : Massless Dirac Fermions in 2D vs 1D

1D metallic nanotubes : *Absence of backscattering*,
2D graphene : *Anti-localization phenomenon*,

Sign inversion of quantum correction ~ S.O coupling effects

Transition Weak localization 1d =02d/Anti-weak localization □ 0.26 K • 7 K $|\langle \psi_{\mathbf{k},s}|\mathcal{T}|\psi_{\mathbf{k}',s'}\rangle|^2$ 00 nm 12 K $\theta_k + \theta_{-k} = \pm \pi$ $\langle s | \mathcal{R}[\theta_k] R^{-1}[\theta_{-k}] | s \rangle = \cos(\theta_k + \theta_{-k})/2$ $x(\mu m)$ E. McCann et al., Phys. Rev. Lett. 97, 146805 (2006) T. Ando, T. Nakanishi and R. Saito, F.V. Tikhonenko et al., Phys. Rev. Lett. 100, 056802 (2008) J. Phys. Soc. Jpn 67, 2857 (1998)

Unconventional Quantum Hall effect

2

-40

-20

0

 V_{q} , V

20

40

Huge Mobility: 20.000-100.000 cm²/V·s

(order of magnitude better than silicon)

Room Temperature and low magnetic field Integer Quantum Hall effect !

OUTLINE of the TALK

Aharonov-Bohm Effect in CNTs

3

Theory and original controversies
 Magnetic field induced metal-semiconductor transition

Aharonov-Bohm effects on the Electronic Spectrum

Magnetic field driven spectral changes

H. Akiji and T. Ando, J. Phys. Soc. Jpn 62, 2470 (1993)
H. Akiji and T. Ando, J. Phys. Soc. Jpn 65, 505 (1996)
S.R., G. Dresselhaus, M. Dresselhaus, R. Saito, PRB 62, 16092 (2000)

12

Magnetotransport in nanotubes : first experiments

A. Bachtold et al, Nature 397, 673 (1999)

* Negative Magnetoresistance * $\phi_0/2$ -periodic oscillations

Weak localization (AAS oscillations)

Diffusive regime (small elastic mean free path)

Weak localization phenomenon

WL & Aronov-Altshuler-Spivak oscillations

NEGATIVE MAGNETORESISTANCE $\phi_0/2$ -periodic oscillations

Theory: Altshuler, Aronov & Spivak JETP 1981 Experiment: Sharvin & Sharvin JETP 1981

B-dependent diffusion coefficient

Magnetoconductance for parallel fields

Tube length: 1.4 µm diameter: ~ 36 nm T = 4.5 K Périodicity en ϕ_0 $\Delta B = \frac{\phi_0}{\pi r^2} = 4.1$ Tesla

Ch. Strünk (regensburg, Germany)

Weak localization signatures

Negative MR Oscillations AAS $\frac{\phi_0}{2}$

Field dependent additional features ?

B-dependent bandstructure features

Comparison with experiments

Density of states for a (260,260) metallic nanotube (diameter \sim 36 nm)

CNT-based device characteristics

Basic Principle to engineer a B-modulated FET ?

G Fedorov, A Tselev, D Jiménez, S Latil, N Kalugin, P Barbara, D Smirnov, SR, Nano Lett. 7, 960 (2007)

Chirality dependent effects

-) Tight-binding calculations for all possible chiralities (diam ~ 1-2 nm) Chirality identification (1.5 - 1.5 -

Charge transport mechanism

-) Temperature-dependent G reveals that charge transport is dominated by a Tunneling regime through a Schottky barrier (B-dependent features)

Arrhenius plots

22

OUTLINE of the TALK

3

B. V.

Landau levels in CNTs

Fabry-Perot regime Propagative Landau levels and Fermi level pinning

Perpendicular Magnetic field

An experimental challenge

To fit the Landau radius on the surface the CNT

d (nm)	SWCNT	MWCNT
B(v=1) (T)	2633	30

To work on clean CNT for a clear observation of Landau quantization

In clean MWCNT, $l_e \approx$ few 100nm

Perpendicular Magnetic field

Some pictures of Landau states

Ballistic Metallic Tube : Fabry-Pérot Cavity

D2 Expérience interférométrique : dépendance de la phase de la fonction d'onde dans une cavité résonante. Oscillations de Fabry-Pérot. DRFMC; 26/03/2008

Magnetic-field induced Modulation of interferences

•Modification of band structure under B_{perp} field :

D4

$$E_{\pm}(k,\nu_B) = \pm \frac{\hbar \nu_F}{I_0 \left(2\nu_B^2\right)} \left| k - k_F \right|$$

•Maximas of G each time the matching phase condition is recovered :

$$\delta k(v_B)L = p\pi$$

Diapositive 28

D4 Mécanisme : pente relation dispersion diminue (structure de bande modifiée sous champ) et condition d'accord de phase modifée. Résultats cohérents qualitativement : fonction de Bessel retrouvée en fonction de l'ordre de la résonance. Pente des courbes à un ordre donné dB/dE bon signe et bon ordre de grandeur.

Oscillation apréiodiques pilotées par la fonction de Bessel.

Vg entre max et min d'une résonance. Pente bas champ : effet de contact ? DRFMC; 26/03/2008

Signature of Landau level formation on conductance

B. Raquet, R. Avriller, B. Lassagne, S. Nanot, W. Escoffier, JM Broto, S.R.. Phys. Rev. Lett. 101, 046803 (2008)

Acknowledgements

Coworkers

<u>Theory</u> : Rémi Avriller (UAM) David Jimenez (UAB)

Experiments

Benjamin Lassagne, Sebastien Nanot, Bertrand Raquet

Georgy Fedorov MAGNET LABORATORY LABORATORY CONVERSITY OF ALARDS NATIONAL LABORATORY UNIVERSITY OF ALARDS NATIONAL LABORATORY UNIVERSITY OF ALARDS

