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Carbon “Nanobuds” 

(nanotubes with 

fullerenes covalently 
attached) 

Atsugi, Japan, March 3, 2008 — The newly-discovered 
composite structure is synthesized at a temperature of 510 °C,  

cooler than for conventional graphene formed at temperatures 
 too high for electronic device applications, thereby paving the 

way for the feasible use of graphene as a material suitable for 
future practical use in electronic devices which are vulnerable 
to heat. 

Nanotube/Graphite composite 





Matsumoto and Saito,  
J.Phys. Soc. Jpn. 71, 2765 (2002) 

• (6,6) tubes 
• C6v symmetry preserved 
• DFT calculations (relaxations + 

electronic structure) 



Gonzalez, Guinea and Herrero 
PRB 79, 165434(2009) 

• Metallic (6n,6n) and (6n,0) tubes 
• C6v symmetry preserved 
• Both Single links and hexagonal arrays 

• TB and continuum theory (Dirac eq.) approaches 

• Existence of propagating, evanescent and localized states, depending on 
the nanotube chirality and size. 

• Estimate of transmission properties 



Baowan, Cox and Hill, Carbon 45, 2972 (2007) 

Geometrical ‘least-squares’ 
optimization 
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• Self-consistent DFT code (LDA, GGA) 

• Pseudopotentials (Kleinman-Bylander) 

• LCAO approximation:  

 Basis set:   

   Confined Numerical Atomic Orbitals 

   (Sankey’s  “fireballs”) 

 As complete as needed 

• Order-N methodology (in the calculation of the DFT Hamiltonian 

and (if required) in the solution of the eigenvalue equation to 

obtain the WFs) 

http://www.uam.es/siesta  

Soler, Artacho, Gale, García, Junquera, Ordejón and Sánchez-Portal 

J. Phys.: Cond. Matt. 14, 2745 (2002) 
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GGA (PBE);     DZP Basis set 



 Model the nanocontact-electrode system from first principles:     

Atomistic level     ---    No adjustable parameters  

• Model a molecule coupled to bulk (semi-infinite) electrodes  

• Include finite bias voltage/current and determine the potential profile 

• Electrons out of equilibrium (do not follow the thermal Fermi occupation) 

• Calculate the conductance (quantum transmission through the molecule) 

• Determine geometry: Relax the atomic positions to an energy minimum 

e 
(in colaboración con M. Brandbyge, K. Stokbro,        

TU-Denmark) 

Brandbyge, Mozos, Ordejón, Taylor and Stokbro      

PRB 65, 165401 (2002) 

(Other similar packages can also be linked to SIESTA) 
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Landauer conductance: 

Open system:  

Solution in finite system: 

   (  ) =  Selfenergies.  Can be obtained from the bulk Greens functions 

 Lopez-Sancho et al. J. Phys. F 14, 1205 (1984) 
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- C region: explicitly solved. 

- B region: only included via the self-energies 

- L and R: explicitly included in C, but H and    

  taken from bulk graphene 



At E=0:  G = 2G0 

Graphene 

Nanotubes Around E=0:  G = 2G0 

(5,5) tube 

Charlier et al, 

RMP’07 
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Metallic tubes:  Extended states   G is nearly independent of tube length 

Semiconducting tubes:  No states in the gap. Conduction by tunneling  

G decreases exponentially with tube length 
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k-point resolved Conductance Supercell: Finite system with Twisted BC:   

(L)= eikL (0)  

(4,4) tube, defect #3 



(4,4) tube, defect #3    -   Dependence on distance to edge 



Eigenchannel analysis:  Two channels contribute to the resonances 

Different positions and different coupling 

(4,4) tube, defect #9  



(4,4) tube, defect #9  



defect #3  
(8,0) tube 

defect #6  

• Band alignment changes due to stress. 

• Leads to different effective tunnel barriers, and to         

I vs length exponential decay with different exponent. 



• (Short) G / CNT / G bridges are conductive, even between (undoped) semiconding tubes.  

• For metallic tubes: 

• For most contacts, the conductance is very good, showing a structure of resonances with 

T=1. These resonances originate on the discrete level structure of the finite nanotube.  

• For very long nanotubes, we expect a conductance of nearly 2Go for a wide range of 

energies 

• Roughly, the conductance does not depend on the length, indicating delocalized wave 

functions and ballistic transport.  

• However, the detailed values of the conductance depend on the contact structure (defects), 

nanotube length and anchoring position at the graphene layer (distance to edge).  

• For semiconducting tubes: 

• The conductance depends exponentially on the tube length, with a (nearly) common decay 

constant, indicating transport by tunneling. Resonances within the energy gap due to 

interface (defect) states. 

• The conductance depends on the contact structure, due to differences in the defect-induced 

interface states, and to different strains. 



Methodology and Code development: 

• The SIESTA Team (www.uam.es/siesta) 

• The TranSIESTA Team: 

• M. Brandbyge, J. Taylor and K. Stokbro (TU-Denmark) 

• J. L. Mozos and F. Novaes (ICMAB) 


