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Doping the nanowires...
Enhancement of the binding energies with decreasing radius.
Effects of the dielectric environment.

Nanowire heterostructures.

Effects of strain relaxation on the electronic properties of nanowire
heterostructures.

Transport properties of semiconductor nanowires.
Surface roughness scattering.
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The tight-binding method

Principle : Expand the wavefunctions as linear combination of atomic orbitals.

» The of the model is limited to 1%, 2™ or 3" nearest-neighbor atoms.

- The matrix elements of the hamiltonian are considered as adjustable
parameters usually fitted to the bulk band structures then to the
nanostructures.

 The computation time scales linearly with the number of atoms (up to a
few millions of atoms today).
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Application : Band gap energies of silicon nanowires

Tight-binding (TB) vs ab initio (LDA) band gaps
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Very good agreement between the tight-binding and the LDA down to the
smallest nanowires.

The band gap energy of small silicon nanowires depends on their orientation.

Electronic structure of semiconductor nanowires
Y. M. Niquet, A. Lherbier, N. H. Quang, M. V. Fernandez-Serra, X. Blase and C. Delerue, Phys. Rev. B 73, 165319 (2006).
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Doping the nanowires...
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The hydrogenoid impurity problem in bulk
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The impurity potential :
* is isotropic.
* is screened by the dielectric constant k at long distances.
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The microscopic interpretation of classical electrostatics

¢

‘c;"’!_"‘_ +1 _ 1_1 1
d K K

A ionized donor attracts nearby valence electrons and gets screened by a
short-range « cloud » of negative charges.

In bulk materials, the charge —

I_E in this cloud comes « from infinity ».

The impurity and its cloud behave as a total charge 1/x creating a potential
V(r,r") = 1/klr — r'l at long distances.
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The microscopic interpretation of classical electrostatics

- In a nanowire, however, the charge in the cloud comes from the surface
(« image charges » distribution).

+ The solution of Poisson equation :
Vo k(" )V V(e 1) =4m0(r — 1/

is actually the potential created in vacuum by the (unscreened) impurity, its cloud
and its image charges.
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The microscopic interpretation of classical electrostatics
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The potential is not isotropic due to the image charges.

The total charge of the system (impurity + cloud + image charges) is +1 ; hence
the potential decreases as 1/Ir — r'l far enough (a few R's) from the impurity.

As a consequence,
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Doping the nanowires

<001>-oriented Si nanowires
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The image charges
in the smallest nanowires !!

° The electron is trapped around
v the donor by the impurity and its
I image charges.
lonization energies of donor and acceptor impurities in semiconductor nanowires : importance of dielectric confinement 10

M. Diarra, Y. M. Niquet, C. Delerue and G. Allan, Phys. Rev. B 75, 045301 (2007).



Doping the nanowires

<001>-oriented Si nanowires
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The binding energy of the impurities and the doping efficiency
depend on the dielectric environment !
(E, W ifk )
Electrostatic engineering of hanowire devices !!

lonization energies of donor and acceptor impurities in semiconductor nanowires : importance of dielectric confinement

11
M. Diarra, Y. M. Niquet, C. Delerue and G. Allan, Phys. Rev. B 75, 045301 (2007).



Experimental evidences
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Donor deactivation in silicon nanostructures

Mikael T. Bjork*, Heinz Schmid, Joachim Knoch, Heike Riel and Walter Riess

The operation of electronic devices relies on the density of free
charge carriers available in the iconductor; in most i
ductor devices this density is controlled by the addition of
doping atoms. As dimensions are scaled down to achieve econ-
omic and performance benefits, the presence of interfaces and
materials to the i will become more
important and will ine the elec-
tronic properties of the device. To sustain further improvements
in performance, novel field-effect transistor architectures, such
as FinFETs'2 and jive field-effect i 37 have been
proposed as replacements for the planar devices used today,
and also for applications in biosensing®'® and power gener-
ation". The successful operation of such devices will depend
on our ability to precisely control the location and number of
active impurity atoms in the host semiconductor during the fab-
rication process. Here, we demonstrate that the free carrier
density in icond ires is di dent on the size
of the iites, By ing the electrical duction of
doped silicon nanowires as a function of nanowire radius, temp-
erature and dielectric surrounding, we show that the donor ion-
ization energy i with i ire radius, and
that it profoundly modifies the attainable free carrier density
at values of the radius much larger than those at which
quantum™" and dopant surface segregation' effects set in.
At a nanowire radius of 15 nm the carrier density is already
50% lower than in bulk silicon due to the dielectric mismatch™®
between the conducting channel and its surroundings.

Nature Nanotechnology 4, 103 (2009)
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APPLIED PHYSICS LETTERS 94, [42102 (200%)

Size-dependent impurity activation energy in GaN nanowires

J. Yoon," A. M. Girgis  I. Shalish,"®' L. R. Ram-Mohan,? and V. Narayanamurti'®!
:th:m.f af Engineering and Applied Sciences, Harvard University, Cambrdge, Massachusens (02138, USA
“Department of Phyvsics, Worcester Palviechnic Institute, Worcester, Massachusetts 01608, USA

{Received 23 February 2009 accepted 17 March 2009; published online & April 2009)

The effect of the surrounding dielectric on the conductivity of GaM nanowires is measured
experimentally. The two following configurations are considered: bare suspended and 510 -coated
nanowires. The measured conductivity 15 consistently fitted by two exponential terms with different
activation cnergies, indicating multchannel conduction. The larger energy. attributed to activaton
of impurities into the conduction subband, shows essentially inverse dependence on nanowire
radius, consistent with the dielectric confinement effect. This agrees with calculated values from
finite element analvsis, The smaller energy is independent of the nanowire radius, suggesting a
surface conduction channel. © 2009 American Institute of Physics. [DOL: 10.1063/1.3115769]
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Nanowire heterostructures
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Nanowire heterostructures

Large interest in nanowire « heterostructures » for optics & transport :

M. T. Bjork et al., Appl. Phys. Lett. 80, 1058 (2002).

* L
~
. e
e e
S
. T T T
]
[T}
[=;
-

Strain relaxation is believed to be efficient in these heterostructures, allowing the
epitaxy of thick lattice mismatched layers.
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InAs/InP superlattices

;Si_m
!a L

- The bond length is 3.13% shorter in InP than in InAs. The InAs layer is thus
compressed by the InP core, but can partly relax strains at the surface of
the nanowire.
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Modeling nanowire heterostructures...
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Strain relaxation
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Strain relaxation is very efficient in nanowire heterostructures. The InAs layer
expands outwards and distorts the surface of the nanowire. The strain distribution is
however very in thin InAs layers : the surface is overrelaxed while
the axis is still significantly compressed.

The InAs layers are almost completely relaxed whent = >2R.
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Sim

Electronic structure
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‘Quantum dots and tunnel barriers in InAs/InP nanowire heterostructures: Electronic and optical properties
Y. M. Niquet and D. Camacho, Phys. Rev. B 77, 115316 (2008).



Electronic structure
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‘Quantum dots and tunnel barriers in InAs/InP nanowire heterostructures: Electronic and optical properties
Y. M. Niquet and D. Camacho, Phys. Rev. B 77, 115316 (2008).
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Electronic structure
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‘Quantum dots and tunnel barriers in InAs/InP nanowire heterostructures: Electronic and optical properties

Y. M. Niquet and D. Camacho, Phys. Rev. B 77, 115316 (2008).
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Electronic structure
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Optical properties

Absorption/luminescence
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The light is polarized perpendicular to the wire in thin, quantum-well like InAs

layers,

nanowires), as a result of the increasing light-hole character of the exciton.

(like in homogeneous

might however reduce the perpendicular oscillator strength !!
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‘Quantum dots and tunnel barriers in InAs/InP nanowire heterostructures: Electronic and optical properties

Y. M. Niquet and D. Camacho, Phys. Rev. B 77, 115316 (2008).
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Highly mismatched heterostructures

Conduction band
=4 nm = -6.699
tans (e [ 6.69%) profile
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z [nm]
EC [eV]
The , near the surface of the

nanowire by the innomogeneous relaxation.

Solution : Grow a thin GaAs shell around the nanowire !..

Might happen even at moderate lattice mismatch in materials with larger electron
effective mass than InAs (m" = 0.023 m ) !

Electronic and optical properties of InAs/GaAs nanowire superlattices

23
Y. M. Niquet, Phys. Rev. B 74, 155304 (2006) ; Nano Letters 7, 1105 (2007).



InP tunnel barriers in InAs nanowires
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H. A. Nilsson et al., Applied Phys. Lett. 89, 163101 (2006).
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The InP barrier is now dilated by
the InAs core, which tends to

Yann-Michel Niquet
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Tunnel barrier heights in InAs/InP superlattices

Conduction band profile (R = 10 nm) Barrier height
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The InP barrier is dilated by the InAs core, which decreases the barrier height for
tunneling or thermionic emission.

The barrier height is close to the bulk value (0.6 eV) in thick, almost strain-free
InP layers (t_ > 1.9R), but tends to the in thin ones.

This must be taken into account in the design of nanowire tunneling devices.

‘Quantum dots and tunnel barriers in InAs/InP nanowire heterostructures: Electronic and optical properties o5
Y. M. Niquet and D. Camacho, Phys. Rev. B 77, 115316 (2008).
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Transport properties of
semiconductor nanowires
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The Kubo and Landauer-Buttiker methods

Kubo method : progagate random wavepackets along the nanowires.

Yields the « » transport properties of infinite, disordered nanowires
(e.g., mean free paths and mobilities).

<107 nm’s ™

Landauer-Buttiker method : Green function method.

Yields the transmission/conductance through a nanowire connected to drain
and source

Gate
D Nanowire S
Gate

The two methods are complementary and well suited to localized basis sets.
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Application : Surface roughness

Disorder : Random fluctuations of the radius of the nanowire, characterized by
the auto-correlation function :

eSS (6R(z,0)5R(z + 82,0+ 80)) = S R2e~ Vo7 T oo/ L,
o Parameters :

T -

e - - R raverage radius.

. o’RO : rms fluctuations of the radius.

- L :correlation length (~ typical size) of the fluctuations.

‘Quantum transport length scales in Silicon-based semiconducting nanowires: Surface roughness effects o8
A. Lherbier, M. Persson, Y. M. Niquet, F. Triozon and S. Roche, Phys. Rev. B. 77, 085301 (2008).



Band structure of silicon nanowires
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The band structure of thin Si NWs is strongly dependent on their orientation :

« Conduction band valley degeneracy completely lifted in [110] Si NWs.
» Lightest hole mass and largest valence subband splittings in [111] Si NWs.

‘Orientational dependence of charge transport in disordered silicon nanowires

M. Persson, A. Lherbier, Y. M. Niquet, F. Triozon and S. Roche, Nano Letters 8, 4146 (2008).
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Mobility as a function of Si NW orientation
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In agreement with the trends evidenced on the band structures,
° is the best orientation for hole transport.
. is the best orientation for electron transport.

‘Orientational dependence of charge transport in disordered silicon nanowires
M. Persson, A. Lherbier, Y. M. Niquet, F. Triozon and S. Roche, Nano Letters 8, 4146 (2008).
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Conclusions

The electrostatics of semiconductor nanowires is very peculiar and affects
their properties even in the > 20 nm range where quantum confinement becomes
negligible.

« » of the environment of the NWs
(e.g. to decrease donor binding energies)

The strain relaxation is very efficient (low cross-sectional area), which allows

the growth of unprecedented heterostructures... but
!

The [110] direction is best for transport in ultimate Si nanowires, while
the [111] direction is best for transport.

Yann-Michel Niquet 31



Screening in a complex dielectric environment

B
5 S

Oxydes and metallic gates screen the impurity potential...
= Decrease of the binding energy
.. BUT ...

The dielectric response of the oxydes is slow...

= !
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Keating's valence force field model

We assume coherent growth. Strain relaxation is computed using Keating's
Valence Force Field model :

1 NN 3 ) R . N
e IR
e g Bond stretching

_|_lz %V: 3Bijk [(I_é —I_é)(l_é —I_é)—kl(d?)( ('))r constant a

25 2 8la0(ag ) T T 3
| >
Bond bending
InAs InP constant 8

& 2 623A 2.541A
a 32.650N/m | 39.820N/m
B 7.350N/m | 8.130N/m
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