Formation energy of charge states of nitrogen and oxygen vacancies in anatase TiO₂: An ab initio study

M.A. Pérez-Osorio,J.M. Pruneda and P.Ordejón CentreD'Investigació en Nanociencia i Nanotecnologia(CIN2:CSIC-ICN) ETSE, Campus UAB,08193 Bellaterra, Barcelona, Spain.

Electronic and structural properties of several charge states of interstitial (Ni) and substitutional (Ns) nitrogen and oxygen vacancies (V_0) into anatase TiO₂ were studied through density functional theory calculations.

The formation energies indicate that different charged states happen in the range of allow edelectronic chemical potential, μe . ForN-doping,neutral and positively charged states occur at μe near the valence band top, namely N_{s}^{0} , N_{s}^{+} and N_{i}^{2+} , while negatively charged states occur at μe near the conduction band bottom, N_{s}^{-} and N_{i}^{-} .

 N_i is energetically more stable than N_s and always has a negative formation energy. The presence of oxygen vacancies would facilite the formation of N_s^- because the defects levels associated to V_O can pin the Fermi level close to the bottom of the conduction band. The neutral and charged states of V_O always show pos-itive formation energies. Vacancies with charge state 2+ have the highest stability, as has been reported in the literature.