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Due to computational limitations, one necessary strategy to study nanoscale 
structures is to reduce, as much as possible, the simulated degrees of freedom. This 
procedure is always traumatic because, in general, a subcomponent of the whole 
system cannot be described independently of the rest (See Fig. 1). The openness of 
classical and quantum systems has been studied extensively in the literature, but few 
works are devoted to discuss its effect on the computation of electric power. Here, we 
provide a novel expression for accurate estimation of the electric power in nanoscale 
open systems using a many-particle electron transport formalism that goes beyond the 
standard “mean field” approximation [1]. Surprisingly, we show that the usual 
expression of the electric power, as the product of the (time-averaged) current 
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the applied voltage Δ , is not correct in nanoscale systems.  

        In order to provide a common classical and quantum language for our 
argumentation, we formulate the problem in terms of the de Broglie–Bohm approach of 
quantum mechanics for an open system of non-relativistic (spinless) Coulomb-
interacting electrons [1,2]. Then, it can be shown that the mean electric power, , for 
the N(t) electrons inside the open system (see Fig. 1b) is: 
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where )iv tr  is the (Bohm) velocity of the i electron, ( )iqE t
r

 is the electrostatic force 

made by the rest of electrons of the whole (closed) system on it, and ( ) ( )L  and Ki 0iK  
are its (Bohm) kinetic energies at the final and initial positions respectively. Here, ...

B
 

is the de Broglie-Bohm averaging that can be converted into time averaging ...
T

P

 under 
standard ergodic argumentations. After some straightforward development, the final 
value of the mean electric power of expression (1) can be written as:   
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(where )( )1,., ,., ,.,i j i Mr r t rr r r r

( ) ( )

W r  is the i-th electrostatic potential defined in Ref. [1] that 
depends on the M electrons present in the close (whole) system (see Fig. 1a) and  

( ) ( ) ( ) ( ))1, ,.,i i M( 1 1,., ,.,i jR t r t r t r=
r r r t r t r t− +

r r r . The first term on the right side of (2) is the 

standard 
T

I V⋅Δ  power expression, while the second term represents the effects of 
the many-particle coulomb correlations on the electric power.   

        In order to show the relevance of the many-particle power correlations, we have 
simulated a nanoscale resistance using, both, a standard single-particle semiconductor 
Monte Carlo simulator and a many-particle electron transport approach explained in 
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Ref. [1]. In fig. 2a, we have represented the current-voltage characteristic for a 
nanoscale resistance using a single-particle (i.e. time-independent electric-field) 
electron transport approach. We define the correlation power factor as the following 
(dimensionless) parameter, ( )T

V P= ⋅ΔG I . As expected, the value of G  reduces to 
unit, i.e. 

T
P I V≈ ⋅Δ

G

, indicating that many-particle Coulomb-interaction effects in the 
power computation are not accessible with single-particle electron transport 
simulations. On the contrary, when the many-particle electron transport formalism 
explained in Ref. [1] is used, then, the relevance of correlations in the average power 
becomes evident (at low bias) in the correlation power factor  depicted in Fig. 3b.  

        The physical explanation of our “unexpected” many-particle corrections on the 
electric power is that the computation of power in numerical simulators has to account 
only for the (non-conservative) energy associated to the N(t) electrons inside the open 
system rather than the (conservative) energy of the M electrons inside the whole 
system (see Fig. 1).  
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Fig.1. Schematic representation of 
the electrons in an electron device. 
a) A closed (whole) system of M 
electrons in the active region and the 
reservoirs and b) the open system of 
N(t) electrons in the active region. 
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Fig.2. a) Average current, electric power, and 
b) correlation power factor, G, defined in the 
text as a function of bias. Electron transport is 
computed from a single-particle approach. 
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Fig.3. a) Average current, electric power, 
and b) correlation power factor, G, 
defined in the text as a function of bias. 
Electron transport is computed from the 
many-particle approach described in [1]. 
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