Mechanical properties of zirconium dioxide and silicon nitride composites

Sina Sadigh Akbari, Serdar Ozgen

Department of Metallurgical and Materials Engineering, Istanbul Technical University, 34469 Maslak,

Istanbul, Turkey ssadighakbari@gmail.com

Abstract

In this study, the mechanical properties of ZrO_2 -Si₃N₄ composites containing 3.12 mass% MgO as a stabilizer sintered at 1600°C for 4 hr in a nitrogen atmosphere has been investigated. XRD phase analysis showed addition of Si₃N₄ destabilized tetragonal zirconia phase and caused the formation of monoclinic zirconia phase, also zirconium oxide nitride phase was formed in the sample with 10 and 15 mass% Si₃N₄[1]. SEM microstructure revealed that the grain size of the specimens decreased with increasing content of Si₃N₄. EDS analysis displays magnesium content increased in the grain boundaries with adding Si₃N₄. The results indicated that ZrO_2 containing 10 and 15 mass% Si₃N₄ were performed higher hardness values than stabilized zirconia[2]. The room temperature mechanical properties of flexural strength decreased with 5 mass% Si₃N₄ then increased with increasing Si₃N₄ content.

References

[1] S. Berendts, M. Lerch, Journal of Crystal Growth, **336** (2011) 106–111.

[2] S. Chockalingam, V. R.W. Amarakoon, Journal of the Ceramic Society of Japan, **116** [6] (2008) 700-705.

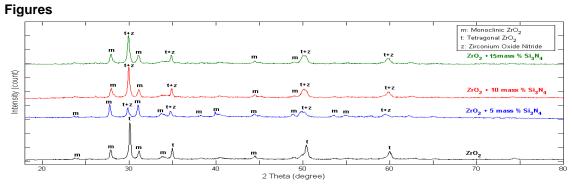


Fig1. XRD phase analysis of ZrO₂-Si₃N₄ composites.

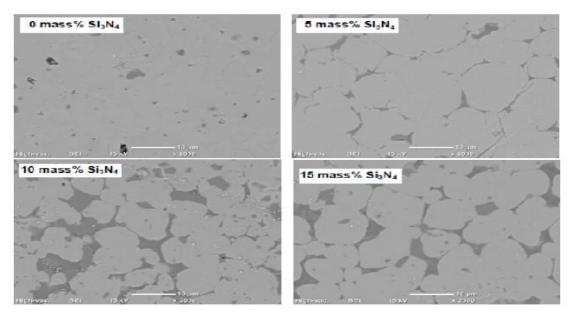


Fig2. SEM microstructure of ZrO₂-Si₃N₄ composites.