Synthesis of nano layer copper oxychloride on the surface of zeolite as Zeolite / Cu₂(OH)₃Cl nanocomposite.

Hossein Jahangirian^{1, *}, Roshanak Rafiee-Moghaddam², Mohd Halim Shah Ismail¹, Yadollah Abdollahi³,

¹ Department of Chemical and environmental engineering, Faculty of engineering, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia

² School of Chemical Sciences and Food Technology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia

³ Institute of advanced Technology, Universiti Putra Malaysia, UPM Serdang, 43400, Selangor, Malaysia

Abstract : Zeolite / copper oxychloride nanocomposite (zeolite / $Cu_2(OH)_3Cl - NCs$) successfully was produced by synthesis of copper oxychloride nanoparticles ($Cu_2(OH)_3Cl - NPs$) on the surface of zeolite using green quick precipitation method.

CuCl₂, NaCl and NaOH aqueous solutions were applied for the synthesis $Cu_2(OH)_3Cl$ - NPs and the reaction was done in bimedium aqueous suspension phase. The production of zeolite / $Cu_2(OH)_3Cl$ – NCs was performed under the mild condition and using friendly environmental raw materials as green chemistry method.

The products was characterized using powder X-ray diffraction (PXRD), transmission electron microscopy (TEM), scanning electron microscopy (SEM), energy dispersive X-ray fluorescence (EDXF) and Fourier transforms infrared spectroscopy (FT–IR). The results were confirmed the formation of various assay of Cu₂(OH)₃Cl-NPs on the surface of zeolite without significant difference in size of Cu₂(OH)₃Cl-NPs while were used different ratio of CuCl₂ and NaCl aqueous solutions amount to amount of zeolite.