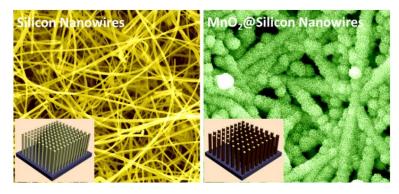
3D hierarchical ultrathin MnO₂ nanoflakes on silicon nanowires for high performance micro-supercapacitors in Li-doped ionic liquid

Deepak P. Dubal ^a, David Aradilla ^{b, c}, Gérard Bidan ^d, Pascal Gentile ^b, Thomas J.S. Schubert ^e, Jan Wimberg ^e, Saïd Sadki ^b, Pedro Gomez-Romero ^{a, f}*

^aCatalan Institute of Nanoscience and Nanotechnology, CIN2, ICN2 (CSIC-ICN), Campus UAB, E-08193 Bellaterra, Barcelona, Spain, ^bLEMOH/SPrAM/UMR 5819 (CEA,CNRS,UJF), CEA/INAC Grenoble, France, ^cSiNaPS Lab.SP2M,UMR-ECEA/UJF,CEA/INAC Grenoble, France, ^dINAC/Dir,CEA/INAC Grenoble, 17 rue des Martyrs, 38054 Grenoble, France

^eIOLITEC IonicLiquidsTechnologiesGmbH,Salzstrasse184,74076Heilbronn,Germany


^fConsejo Superior de Investigaciones Científicas (CSIC), Spain

Presenting author: Dr. Deepak Dubal (dubaldeepak2 @gmail.com) Corresponding author: Prof. Pedro

Gomez-Romero

Abstract

Building of hierarchical core-shell hetero-structures is currently the subject of intensive research in the electrochemical field owing to its potential for making improved electrodes for high-performance micro-supercapacitors. Here we report a novel architecture design of hierarchical MnO₂@silicon nanowires (MnO₂@siNWs) hetero-structures directly supported onto silicon wafer coupled with Li-ion doped 1-Methyl-1-propylpyrrolidinium bis(trifluromethylsulfonyl)imide (PMPyrrBTA) ionic liquids as electrolyte for micro-supercapacitors. A unique 3D mesoporous MnO₂@SiNWs in Li-ion doped IL electrolyte can be cycled reversibly across a voltage of 2.2 V and exhibits a high areal capacitance of 13 mFcm⁻². The high conductivity of the SiNWs arrays combined with the large surface area of ultrathin MnO₂ nanoflakes are responsible for the remarkable performance of these MnO₂@SiNWs hetero-structures which exhibit high energy density and excellent cycling stability. This combination of hybrid electrode and hybrid electrolyte opens up a novel avenue to design electrode materials for high-performance micro-supercapacitors.

