Lipid nanoparticles as tobramycin and sodium colistimethate encapsulation alternative: towards improved anti-infective therapy against *Pseudomonas aeruginosa* infection

M Pastor^{1*}, M Moreno-Sastre^{2,3,*}, A Esquisabel^{2,3}, G Gainza¹, E Herran¹, S Villullas¹, O Ibarrola¹, A del Pozo¹, JJ Aguirre¹, M Castresana¹, E Sans⁴, M Viñas⁴, D Bachiller^{5,6}, JL Pedraz^{2,3}, E Gainza¹

¹BioPraxis AIE, Hermanos Lumière 5, 01510 Miñano, Spain ²NanoBioCel Group and CIBER-BBN³ Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV/EHU), Vitoria, 01006, Spain ⁴Dept. Pathology and Experimental Therapeutics. Medical School. Univ. Barcelona-IDIBELL⁵Fundación Investigaciones Sanitarias Islas Baleares (FISIB), Development and Regeneration Program, Ctra. Sóller km 12,07110 Bunyola (Balearic Islands),Spain ⁶Consejo Superior de Investigaciones Científicas (CSIC), Ctra. Sóller km 12, 7110 Bunyola (Balearic Islands), Spain <u>mpastor@praxisph.com</u>

Abstract

Antibiotic resistance is becoming a major threat for the society [1]. In this framework, *Pseudomonas aeruginosa* plays a major role as it is responsible for 10% of nosocomial infections leading to severe and life-threatening infections [2]. As a strategy to enhance the antimicrobial therapy against *Pseudomonas aeruginosa*, herein we developed sodium collistimethate (SCM) or tobramycin (TOB) loaded lipid nanoparticles, namely, nanostructured lipid carriers (NLC).

Lipid nanoparticles were elaborated following an organic solvent free hot-melt homogenization technique. Subsequently, NLCs were freeze dried. The nanoparticles obtained displayed a 200-400 nm size, high drug entrapment (≈94%) and a sustained drug release profile over 48h. As TEM images showed (Fig.1.) particles were spherical and homogeneous.

Formulation	Size (nm) ^a	PDI ^a	Zeta potential (mV) ^a	EE (%)a
SCM-NLC	412.5 ± 13.9	0.442	-21.97 ± 1.72	94.79±4.20
TOB-NLC	254.05 ± 14.50	0.311	-23.03 ± 2.76	93.14 ± 0.13

Moreover, the formulations were active against clinically isolated *Pseudomonas aeruginosa* as MIC test revealed, where both formulations showed a MIC value ranging from 0.5 to 1 μ g/ml (see Fig 2). Altogether, the work reported here seems to us an encouraging step towards an improved therapy against *Pseudomonas aeruginosa*.

References

[1] E Leung, DE Weil, M Raviglione, H Nakatani on behalf of the World Health Organization World Health Day Antimicrobial Resistance Technical Working Group, Bulletin of the World Health Organization, **89** (2011) 390-2.

[2] V Aloush, S Navon-Venezia, Y Seigman-Igra, S Cabili, Y Carmeli. Multidrug-Resistant *Pseudomonas aeruginosa*: Risk Factors and Clinical Impact. Antimicrobial Agent and Chemotherapy, **50** (2006) 43-48.

Figures

Fig. 1-SEM images, left TOB-NLC and right SCM-NLC

Fig.2. MIC values of free and encapsulated antibiotics in $\mu g/ml$

Acknowledgement

M Moreno-Sastre thanks the University of the Basque Country for the ZabaldUz fellowship grant. The authors acknowledge the support of UPV/EHU (UFI11/32 and SGIker), of the CSIC and FISIB.