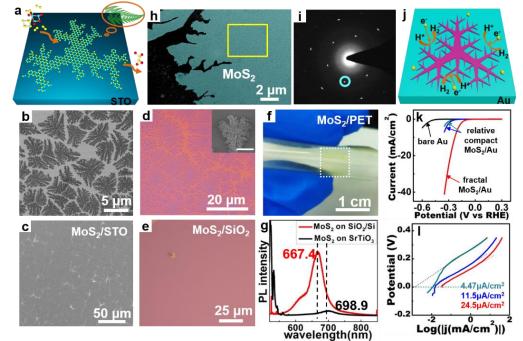
Dendritic, Transferable, Strictly Monolayer MoS₂ Flakes Synthesized on SrTiO₃ Single Crystals for Efficient Electrocatalytic Applications

Yu Zhang, Yanfeng Zhang,* Zhongfan Liu

Department of Materials Science and Engineering, College of Engineering, Peking University, 100871, Beijing, China


Email: yanfengzhang@pku.edu.cn

Abstract

Controllable synthesis of macroscopically uniform, high quality monolayer MoS₂ is crucial for harnessing its great potentials in optoelectronics, electrocatalysis and energy storage. To date, triangular MoS₂ single crystals or their polycrystalline aggregates have been synthesized on insulating substrates of SiO₂/Si, mica and sapphire, *etc.*, *via* portable chemical vapor deposition methods. Herein, we report a controllable synthesis of dendritic, strictly monolayer MoS₂ flakes possessing tunable degrees of fractal on a specific insulator SrTiO₃. Interestingly, the dendritic monolayer MoS₂ characterized with abundant edges can be transferred intact onto Au foil electrodes and serve as ideal electrocatalysts for hydrogen evolution reaction, reflected by a rather low Tafel slope of~73 mV/decade among CVD-grown two-dimensional MoS₂ flakes. In addition, we reveal that centimeter-scale uniform, strictly monolayer MoS₂ films consisting of relatively compact domains can also be obtained, offering insights into promising applications such as flexible energy conversion/harvesting and optoelectronics.

References

[1] Voiry, D.; Salehi, M.; Silva, R.; Fujita, T.; Chen, M.; Asefa, T.; Shenoy, V. B.; Eda, G.; Chhowalla, M. *Nano Lett.***13**(2013), 6222-6227.
[2] Zhang, Y.; Ji, Q.; Han, G.-F.; Ju, J.; Shi, J.; Ma, D.; Zhang, Y.; Li, M.; Lang, X.-Y.; Zhang, Y.; Liu, Z. ACS *Nano*, **8** (2014), 8617–8624.

Figures