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We present a new approach to the widely used recursive Green’s function technique and its application to local electronic
and transport calculations of graphene nanostructures such as bubbles and perforations.

First, we consider strained graphene bubbles and calculate the local density of states (LDOS) directly from tight binding
thus going beyond the effective Dirac model. We demonstrate how the LDOS in nanobubbles with clamped edges contains
strong signatures of this edge. In particular, we show how the clamped edge gives rise to significant Friedel type oscillations
and spatial variations in the LDOS, as shown in Fig. 1a. The Friedel effects mix with any pseudomagnetic effects arising from
the strain field. As many attempts to reliably produce nanobubbles result in significant edge effects, it is important to note
that, when looking at the LDOS, simple size dependent features can become comparable to the effect of the strain induced
pseudomagnetic field.

Secondly, we consider the transmission between two point probes connected to an extended graphene sample. This demon-
strates how the patched Green’s function technique efficiently calculates transport properties for widely separated features while
still allowing for local mapping of bond currents and LDOS. Specifically, we show the current flow around perforations of the
graphene lattice. Here localised states around zigzag edge segments of the perforation give rise to distinct signatures in the
transmission spectrum. Furthermore, local mapping of the bond currents show how the transmission signatures are connected
to vortex like current paths formed near these edges, see Fig. 1b.

The developed method is based on Green’s functions and considers several device patches described by the Hamiltonian, HD,
and connected through a self energy, ΣB , describing the extended part of the system as shown schematically on Fig. 1c. The
patched Green’s function technique thus allows for calculations of non-periodic structures embedded within extended samples.
The calculation scheme relies on a combination of analytic expressions for infinite pristine systems and an adaptive recursive
Green’s function scheme. The combination allows us to efficiently calculate both local electronic and transport properties while
including multiple leads on arbitrary geometries within extended samples.

Fig. 1: a) Shows deformation profile of a graphene bubble. The colormap indicates the difference in LDOS between the situation with and
without the bubble. Yellow indicates high LDOS difference and black denote zero difference. The scalebar is 5 nm. b) The arrows indicate
the bond currents emitted from the top probe and passing a perforation with zigzag edges (region without arrows). The color of the arrows
correspond to the size of the current. c) Schematic of the patched Green’s function calculation setup. Where the device is indicated in dark
gray and the extended part, described efficiently by the self energy ΣB , is indicated by light gray.


