Suspended graphene under moderate intrinsic strain

Ioannis Polyzos1, Massimiliano Bianchi2, Laura Rizzi3, John Parthenios1, Konstantinos Papagelis1,4, Roman Sordan2 and Costas Galitis1,5

1Institute of Chemical Engineering Sciences, Foundation of Research and Technology-Hellas (FORTH/ICE-HT), Patras, Greece
2L-NESS, Department of Physics, Politecnico di Milano, Polo di Como, Via Anzani 42, 22100, Italy
3DIRECTA PLUS S.p.A., c/o Parco Scientifico di ComoNEXT, Via Cavour 2, 22074 Lomazzo (Co), Italy
4Department of Materials Science, University of Patras, Greece
5Department of Chemical Engineering, University of Patras, Greece

ipolyzos@iceht.forth.gr

Abstract

Graphene is a perfect 2D covalent crystal, which forms the basis of all graphitic structures1. It can be stacked into three-dimensional graphite, rolled into one-dimensional nanotubes, or wrapped into zero-dimensional fullerene. Due to its inherent properties and the great variety of possible applications graphene has stimulated a lot of theoretical and experimental research over the last decade. The mechanical properties of graphene make it an ideal candidate for micro and nano-mechanical applications. Graphene has intrinsic tensile strength higher than any other known material and tensile stiffness similar to values measured for graphite2. Furthermore, mechanical deformation (strain) can be used to tailor its electronic properties3 allowing the fabrication of all-graphene circuits. In addition, certain strain configurations are equivalent to high pseudo-magnetic fields4. Therefore, the understanding of graphene properties under strain is of great importance.

In this work, a graphene flake was sandwiched between two PMMA layers and was suspended in air by removing a section of the polymer with e-beam lithography. This procedure resulted in the imposition of true uniaxial tension to graphene of up to 0.8% strain (fig.1), as confirmed by laser Raman mapping at steps as small as 100 nm along and across the flake. Splitting of the Raman G line as well as of the 2D line was observed. The strain estimated directly from the well-known peak shifts of the Raman G sub-peaks. The dependence of Raman shift of G, \(G^+\), 2D, 2D$^\text{\ast}$ and 2D$^\text{\ast\ast}$ modes on strain are presented. Our results are in excellent agreement with the previously reported results for supported graphene and the theoretical predictions for graphene in air.

Figure 1 (a) Initial (zero strain) and final (with strain distribution) window (b) Representative Raman spectra of the G-peak at various strain levels (c) G sub-peaks position as a function of strain for suspended SLG

References

1 A. K. Geim and K. S. Novoselov, Nat Mater 6 (3), 183 (2007).
2 Changgu Lee, Xiaoding Wei, Jeffrey W. Kysar, and James Hone, Science 321 (5887), 385 (2008).