Analyzing Thickness Dependent Electronic Properties of MoS₂

Ryan J. Wu¹, Jong Seok. Jeong¹, K. Andre Mkhoyan¹

¹Department of Chemical Engineering and Material Science University of Minnesota, Minneapolis, MN, USA wuxx0642@umn.edu

Abstract

Transition metal dichalcogenides (TMDs) with formula MX_2 , where M is a group 4-6 transition metal and X is a chalcogen, have captured immense research interest as a unique class of 2D materials with favorable electronic and optical properties¹. One notable aspect of this material is its tunable properties with thickness as demonstrated by optical techniques². This work analyzes the changes in the electronic structure and properties of MoS₂ with thickness using the analytical scanning transmission electron microscope (STEM). Annular dark field – STEM (ADF-STEM) provided atomic resolution images which, in conjunction with *multislice* simulations, allowed complete verification of layer thickness (Figure 1). Furthermore, electron energy loss spectroscopy (EELS) was used to acquire electronic information from 1 to 3 layer thick MoS₂ (Figure 2). With each additional layer, the spectrum showed changes in the band gap, bulk and surface plasmon excitations, and other low energy transitions indicating a change in the electronic properties with thickness as theoretically predicted³.

References

1. Wang, Q.H. et al., Nature Nanotechnology, 11, (2012) 699-712

- 2. Mak, K.F. et al., Physical Review Letters, **13**, (2010) 136805
- 3. Johari, P., Shenoy, V.B., ACS Nano, 7, (2011) 5903-5908

Figure 1: (Top) Filtered STEM image showing step change in thickness from 1-3 layers. (Bottom) Comparison of experimental and simulated ADF-STEM images at each thickness.

Figure 2: Low-Loss EELS spectrum of a 3 layer MoS_2 . Notable peaks are highlighted.