Hybrid polyoxometalate/reduced graphene oxide composites for supercapacitors.

Jullieth Suarez-Guevaraa, Vanesa Ruiza,b Pedro Gomez-Romeroa,*

a Institut Català de Nanociència i Nanotecnologia, ICN2-CSIC-UAB Campus 08193 Bellaterra, Spain.
Phone: +34 937373608

b Present Address: European Commission, DG Joint Research Centre, Institute for Energy and Transport, P.O. Box 2, 1755 ZG Petten, The Netherlands

*pedro.gomez@cin2.es, jullieth.suarez@gmail.com, vanesarz79@gmail.com

Abstract

In this work, we present the novel synthesis and electrochemical study of polyoxometalate-graphene oxide hybrid materials to be used as electrode in Supercapacitors (SCs). The synthesis involves the reduction of graphene oxide (GO) with simultaneous incorporation of polyoxometalate (POM).1 The existence of the strong chemisorption between polyoxometalate and graphene oxide makes it possible to construct stable hybrid carbon structures.

Hybrid materials were carried out in a single step by means of a hydrothermal treatment (120 °C, 24 h) of an aqueous solution of polyoxometalate: H\textsubscript{3}PMo\textsubscript{12}O\textsubscript{40}.10H\textsubscript{2}O (PMo\textsubscript{12}) and exfoliated graphene oxide (GO). The resulting materials (labeled HT-RGO-PMo\textsubscript{12}) was filtered-off, washed and dried at 50 °C overnight. The amount of POM impregnated was determined by TGA. A similar treatment of a GO sample without POM added was carried out for comparison (sample HT-RGO).

Figure 1 shows the HR-TEM images of the blank HT-RGO sample (Fig. 1A) and HT-RGO-PMo\textsubscript{12} (Fig. 1B). The presences of the inorganic POM clusters on the surface graphene are clearly detected in the latter image, and are evenly distributed at a truly molecular level and no agglomerate or nanocrystal could be detected.

The electrochemical characterization of the hybrid materials was tested by cyclic voltammetry and galvanostatic charge-discharge test in two- and three- electrodes configurations, where platinum wire and Ag|AgCl were used as counter and reference electrode, respectively. 1 M H\textsubscript{2}SO\textsubscript{4} was the electrolyte.

References

Figures

Figure 1. - HR-TEM images of HT-RGO (A) and HT-RGO-PMo12 (B). Scale bars are 10 nm.