Thin MoS₂ layer grown on SiO₂ by CVD method

A. Cortés, C. Celedón

Depto. de Física, Universidad Técnica Federico Santa María, Casilla 110-V, Valparaíso, Chile ²Instituto Balseiro (U. N. de Cuyo and CNEA), Barloche, Argentina <u>Andrea.cortes@usm.cl</u>

Abstract

The Transition metal dichalcogenides (TMD), MX_2 (M=Mo, W; X=S, Se, Te), inorganic graphene analogues, have attracted substantial attention due their great potential in various fields as catalysis, nanotribology, microelectronics, lithium batteries, hydrogen storage, medical and optoelectronics [1]. Especially MoS₂ due to the direct gap, that presents the monolayer, promises applications in optoelectronics.

Substantial efforts have been addressed to growing of thin-layer MoS₂, using various methods including scotch tape based micromechanical exfoliation and, chemical exfoliation of bulk material, chemical vapor deposition (CVD), among other techniques [2].

In this work, CVD method was used to explore the growing of thin MoS₂ layer. MoS₂ (mono and few layer) was grown directly on SiO₂/Si substrates using MoO₃ powder. By optical microscopy was possible to identify MoS₂ layer-regions based on the optical contrast. Raman spectroscopy (laser λ =532 nm) analysis showed two typical active modes: E¹_{2g} and A_{1g} [3]. These modes of vibration have been investigated both theoretically and empirically in MoS₂ bulk. E¹_{2g} mode indicates planar vibration and A_{1g} mode is associated with the vibration of sulfides in the out-of-plane direction. Raman peak position of v E¹_{2g} and A_{1g} was used in order identify the thickness of the layers[3]. The peaks were found to be blue-shift for E¹_{2g} and red-shift for A_{1g} when it compared mono layer with MoS₂ bulk.

References

[1] M. Chhowalla, H. Shin, L. Li et al. Chemistry, 5, 4, (2013) 263

[2] S. Butler, S. Hollen, L. Cao et al. ACS Nano, 4, (2013)898.

[3] Li, Q. Zhang, C. Yap et al. Advanced Functional Materials, 22, 7, (2012) 1385.

Figures

Figure 1. Optical image of thin MoS₂ film onto SiO₂/Si substrate and Raman spectrum for bulk and mono-layer MoS₂ (laser λ =532 nm).

Acknowledgment: FONDECYT 11110522 (synthesis), FONDEF D1111213 (Raman Spectroscopy)