Magneto-transport in large area epitaxial graphene grown on SiC:

E. Pallecchi¹, M. Ridene¹, D. Kazazis¹, F. Schopfer², W. Poirier², M. Goerbig³, D. Mailly¹, and A. Ouerghi¹

- 1) CNRS Laboratoire de Photonique et de Nanostructures, 91460 Marcoussis, France
- 2) Laboratoire National de Metrologie et d'Essais, 78197 Trappes, France
- 3) Laboratoire des Physique de Solides, F-91505, Orsay, France

emiliano.pallecchi@lpn.cnrs.fr

In this talk I will present magneto-transport measurements on epitaxial graphene grown on SiC(0001), either under UHV or atmospheric pressure. A low pressure growth results in low-mobility devices were both a localized state at low magnetic fields and a quantum Hall state at higher fields are observed. We find that for sufficiently strong disorder the system undergoes a direct transition from an insulating to a relativistic Hall conductor regime. Analysis of the magneto-conductivity hints to a quantum phase transitions, rather than a simple crossover. For samples grown at atmospheric pressure we find high mobilities, up to 10.000 cm2/Vs, and we observe quantum Hall plateaus around filling factors n=2,6,10,14. Given the large sizes of our graphene Hall bars, the quantum Hall breakdown current are large, which is promising for metrological applications. Finally, I will briefly discuss the case of multilayer graphene grown on SiC(000-1).