Resonant modes in strain-induced graphene superlattices

F. M. D Pellegrino (1), G. G. N. Angilella (2,3,4,5), R. Pucci (2,3)

(1) NEST, Istituto Nanoscienze-CNR and Scuola Normale Superiore, I-56126 Pisa, Italy.
(2) Dipartimento di Fisica e Astronomia, Università di Catania, Via S. Sofia, 64, I-95123 Catania, Italy.
(3) CNISM, UdR Catania, Italy.
(4) Scuola Superiore di Catania, Università di Catania, Via Valdisavoia, 9, I-95123 Catania, Italy.
(5) INFN, Sez. Catania, Italy.

francesco.pellegrino@sns.it

After reviewing electronic transport across a strained graphene sheet [1,2], we consider tunneling across a strain-induced superlattice in graphene. In studying the effect of applied strain on the low-lying Dirac-like spectrum, both a shift of the Dirac points in reciprocal space, and a deformation of the Dirac cones is explicitly considered. The latter corresponds to an anisotropic, possibly non-uniform, Fermi velocity. Along with the modes with unit transmission usually found across a single barrier, we analytically find additional resonant modes when considering a periodic structure of several strain-induced barriers. We also study the band-like spectrum of bound states, as a function of conserved energy and transverse momentum [3]. Such a strain-induced superlattice may thus effectively work as a mode filter for transport in graphene.

References