Electronic structure of graphene hybrid systems: Screening and interactions

T. Wehling¹, M. Rösner¹, M. Schüler¹, A. Lichtenstein³, S. Yuan³, M. Katsnelson²

¹Institute for Theoretical Physics and BCCMS, University of Bremen, D-28359 Bremen, Germany, wehling@itp.uni-bremen.de
²1st Institute for Theoretical Physics, University of Hamburg, D-20355 Hamburg, Germany
³Radboud University Nijmegen, NL-6525 AJ Nijmegen, The Netherlands

Abstract

We consider the effect of adsorbates and substrates on the electronic screening and electron-electron interactions in graphene. First, resonant scatterers such as hydrogen adatoms can strongly enhance the low-energy density of states in graphene. We study the impact of these impurities on electronic screening and find a two-faced behavior: Kubo formula calculations reveal an increased dielectric function ε upon creation of midgap states but no metallic divergence of the static ε at small momentum transfer $q \to 0$. This bad metal behavior manifests also in the dynamic polarization function and can be directly measured by means of electron energy loss spectroscopy. A new length scale l_c beyond which screening is suppressed emerges, which we identify with the Anderson localization length [1].

We then address the question of how strong Coulomb interactions in graphene derived materials are: Free standing graphene is shown to feature simultaneously strong local ($U/t \sim 3.3$) and non-local Coulomb interaction terms [2]. Based on the Peierls-Feynman-Bogoliubov variational principle we show that the non-local Coulomb interactions can effectively screen the local interactions and stabilize the Dirac electron sea in graphene [3]. Interestingly, the ratio of the local to the non-local Coulomb interaction can be controlled by a metallic substrate, which efficiently screens non-local Coulomb terms.

References

Figures

(a) Effective Coulomb interactions in graphene: Contribution to the static dielectric function in graphene due to the σ-bands, which controls the effective interactions strength of the π-electrons. From [2]