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Abstract  

There is a widespread belief that electrostatic confinement of graphene charge carriers, which 

resemble massless Dirac fermions, is impossible as a result of the Klein paradox. We show that full 

confinement is indeed possible for zero-energy states in pristine graphene. We present exact 

analytical solutions for the zero-energy modes of two-dimensional massless Dirac fermions confined 

within a smooth one-dimensional potential given by hyperbolic secant [1], which provides a 

reasonable fit for the potential profiles of existing top-gated graphene structures [2-5]. A simple 

relationship between the characteristic strength and the number of confined modes within this model 

potential is found. A numerical method for finding the number of fully confined zero-energy modes in 

any smooth potential, decaying at large distances faster than the Coulomb potential, has also been 

developed and used to evaluate the conductivity of a channel formed by a realistic top-gate potential 

[6]. The long-range behaviour of the potential defines the threshold condition for confinement, with 

power-decaying potentials demonstrating drastically different behaviour from exponentially-decaying 

and square well models. An experimental setup is proposed for the observation of fully-confined 

electronic guided modes (see Fig. 1). 

We also show that full confinement is possible for zero-energy states in electrostatically-defined 

quantum dots and rings with smooth potential profiles. The necessary condition for confinement for 

potentials decaying faster than an unscreened Coulomb potential is a non-zero value of angular 

momentum, i.e. the confined states are vortices (see Fig. 2). Again, analytic solutions are found for a 

class of model potentials [7]. These exact solutions allow us to draw conclusions on general 

requirements for the potential to support fully confined states, including a critical value of the potential 

strength and spatial extent. The implications of fully-confined zero-energy states for STM 

measurements and minimal conductivity in graphene are discussed.  

We demonstrate that the excitonic insulator gap predicted some time ago [8] and revisited recently by 

several groups [9,10] cannot exist in graphene samples with back gates as confirmed by experiments 

[11].  A qualitatively different picture based on Bose-Einstein condensation of zero-energy electron-

hole vortices (excitons) is proposed to explain the Fermi velocity renormalization in gated graphene 

structures which is observed instead of the gap.  
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Fig 1. (a) A schematic of a gedanken experiment for the observation of localized modes in graphene 
waveguides created by a top-gate. (b) The electrostatic potential created by the applied top-gate voltage 
is modeled as a hyperbolic secant. The plane shows the Fermi-level position. 

Fig 2. (a) Radial wave-function components for the first two states with angular momentum m = 1 for the 
Lorentzian potential (a) N = 0; (b) N = 1; and for a model ring-like potential (c) N = 0; and (d) N = 1. Here 
N is the number of non-zero nodes in the wavefunction component, which has the smallest number of 
nodes. Solid (dotted) lines correspond to the upper (lower) wavefunction components. Insets: shape of 
the probability density for each state. 

lines correspond to components χA (iχB). Insets: shape of the probability density for each state. 


