Two Dimensional Vertical Heterojunction with MoS₂, MoSe₂, and WSe₂

¹**Dae-Yeong Lee**, ²Gwan Hyoung Lee, ¹Xiaochi Liu, ²James Hone, ¹Won Jong Yoo

¹Sungkyunkwan Univ. (SKKU), SKKU Advanced Institute of Nano-Technology (SAINT), 2066 Seobu-ro, Jangan-gu, Suwon-si, Gyeonggi-do, 440-746, Korea ²Columbia University, Department of Mechanical Engineering, New York, New York, 10027, USA suslick@skku.edul

Abstract

Two dimensional material graphene has been a hot material for the researchers worldwide because of its fascinating mechanical, chemical, physical, thermal, and electrical properties [1]. However, because of its lack of band gap, its application to digital device has a limitation. Recently new two dimensional materials, such as molybdenum diselenide (MoSe₂), molybdenum disulfide (MoS₂), tungsten diselenide (MoSe₂), and tungsten disulfide (WS₂), are getting a spotlight because of their band gap [2–4]. With the graphene, these materials become the candidates which can replace silicon for future transparent and flexible electronics.

In this study, we made vertical heterojunction using two dimensional materials using $MoSe_2$, MoS_2 , and WSe_2 . The junctions consist of these materials show rectifying behavior like p-n junction. Single $MoSe_2$ device shows unipolar rectifying behavior because of its double Schottky barriers (Figure 1). The $MoSe_2$ transistor shows about 10^5 on/off ratio and huge hysteresis which can be applicable to switch and/or memory devices. $MoSe_2$ - MoS_2 junction devices also show rectifying behavior depends on their flake thickness (Figure 2 and 3). Junction consist of thick flakes shows severe reverse current (Figure 2) otherwise thin junction shows almost no reverse current (Figure 3).

References

- [1] A. K. Geim and K. S. Novoselov, Nature Materials 6, 183 (2007).
- [2] K. Mak, C. Lee, J. Hone, J. Shan, and T. Heinz, Physical Review Letters 105, 2 (2010).
- [3] H. Fang, S. Chuang, T. C. Chang, K. Takei, T. Takahashi, and A. Javey, Nano Letters **12**, 3788 (2012).
- [4] S. Tongay, J. Zhou, C. Ataca, K. Lo, T. S. Matthews, J. Li, J. C. Grossman, and J. Wu, Nano Letters **12**, 5576 (2012).

Figures

Figure 1. Linear (a) and log (b) scale output curve of MoSe₂ transistor. Inset in (a) shows the optical image of fabricated device. Red circles are probed electrodes in measurement.

Figure 2. (a) log scale output curve of $MoSe_2-MoS_2$ junction device. Inset is linear scale of it. (b) Device structure of $MoSe_2-MoS_2$ junction device. Red circles are probed electrodes in measurement.

Figure 3. (a) log scale output curve of $MoSe_2-MoS_2$ junction device. Inset is linear scale of it. (b) Device structure of $MoSe_2-MoS_2$ junction device.