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Abstract  
 
The tight-binding (TB) description of bulk graphene uses only first nearest-neighbour hopping (i.e., a 
simple tight-binding (STB) model) to calculate its electronic properties [1]. Unlike the bulk, the TB 
minimal model description of graphene nanoribbons (GNRs) requires extended hopping terms, up to 
third nearest-neighbour for armchair [2], and with mean-field Hubbard-U interaction for zigzag GNRs [3-
6]. These terms are necessary in the TB model to reproduce the semi-conductor properties of GNRs, as 
seen in both density functional theory (DFT) simulations [7], as well as experiment [8]. In addition, the 
mean-field Hubbard-U is also required for ZGNRs to produce the DFT-predicted magnetism [7].  
 
For mixed-edge GNRs (which are experimentally more realistic), a generalised TB (GTB) model has 
been proposed, which includes up to third nearest-neighbour hopping with Hubbard-U and uses a single 
parameter set to accurately reproduce the low-energy band structure and band gaps obtained from local 
spin-density functional theory GNR results [9]. The GTB model has an advantage in that it is 
computationally efficient against DFT, exact diagonalisation, CI and other methods for calculating 
reduced symmetry systems with large unit cells that are more relevant to experiment (i.e., with realistic 
defects and patterning). 
 
In this presentation, we provide several examples of why ‘to U’ is an essential question. Specifically, we 
demonstrate the importance of the GTB model for the study of magnetism in GNRs. With the 
computational efficiency of the GTB model, we have been able to understand the effect of random 
edge-vacancies, as well as random edge-disorder. In the systematic edge-vacancy study of Huang et 
al., it was shown that at ~33% edge-vacancy concentration, ZGNRs become non-magnetic [10]. This is, 
in fact, contrary to our random edge-vacancy results, which are beyond the scope of DFT, and show 
that the spin-polarisation does not disappear irrespective of the random edge-vacancy concentration 
(Fig. 1). For random edge-vacancy and edge-disordered ZGNRs, we have also investigated the 
interplay between Anderson localisation and the Hubbard-U within the GTB model applied to coherent 
transport studies. Contrary to other research, which uses the STB description to model disordered 
ZGNRs [11], we demonstrate that Hubbard-U effects remain important and that these effects cannot be 
ignored. We have also been able to demonstrate spintronics and spin-filtering by applying the GTB 
model to patterned ZGNRs both with and without strain, thereby using the U in GNR device design (Fig. 
2) [12]. 
 
‘To U’ is therefore essential, particularly in the recent wake of experimental evidence, which shows 
signatures of magnetism in scanning tunneling spectroscopy results of chiral GNRs [12]. We would like 
to introduce the formalism behind this computational efficient model, and provide evidence to convince 
more theoreticians to take up the U when studying graphene on the nanoscale. 
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Fig. 1 Average net spin-polarisation per atom as a function of the % defect concentration (ensemble averaged) for a 
5-ZGNR ribbon of length 49.2 Å and width 9.24 Å shown on the right with (a) zero, (b) 5% and (c) 41.3% random 
edge-vacancy defect concentrations calculated using the GTB model. In comparison, an ideal 5-ZGNR has an 
average net spin-polarisation per atom of 0.033. N.b., Huang et al.’s systematic defected system has a total loss of 
spin-polarisation at 33.3% edge-vacancy defects [10]. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 2 Effect of uniaxial strain in the y-direction on the spin-dependent conduction-gap for ideal, square (left top) and 
V-shaped notch (right top) devices calculated using the GTB model within the coherent transport formalism. In the 
V-shaped notch system there occurs a spin-dependent result, which at 20% strain leads to spin-filtering [11]. 
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dependent Hamiltonians, which are then solved self-
consistently [67].

The coherent transport properties of the ZGNRs are
modeled using Eqs. (1) and (2) within the Landauer-
Büttiker formalism [68], and assuming that the device
has ideal, semi-infinite ZGNR leads. The spin-dependent
conductance G

�

(E) is calculated as a function of the en-
ergy E, and is obtained from the transmission function
T
�

(E), such that,

G
�

(E) =
e2

h
T
�

(E), (3)

where e and h are the electron charge and Planck’s con-
stant, respectively. Here,

T
�

(E) = Tr[�
L�

(E)GRet

�

(E)�
R�

(E)GAdv

�

(E)], (4)

where, G
Ret/Adv

�

(E) denote the retarded/advanced
Green’s functions. The �

L/R�

(E) functions in Eq. 4 are
calculated using

�
L/R�

(E) = [⌃Ret

L/R�

(E)� ⌃Adv

L/R�

(E)], (5)

where

⌃Ret/Adv

L/R�

(E) = V †
L/R

g
Ret/Adv

L/R�

(E)V
L/R

. (6)

Here, V
L/R

describes the coupling between the ZGNR

device and the L(eft)/R(ight) lead, and g
Ret/Adv

L/R�

(E) are

the retarded/advanced surface Green’s functions for the
leads, which have been obtained using the decimation
iteration method (Ref. [69]). The transmission function
(Eq. 4) has been calculated using the methods described
in Ref. [70].

The parameters for the generalized TB model (Eq. (1))
have been obtained by fitting to LSDA DFT results,
with a single parameter set, t1=2.7, t2=0.20, t3=0.18 and
U=2.0 (in units of eV), being determined for hydrogen-
passivated armchair, zig-zag and mixed-edge GNRs [35].
Here, t1, t2 and t3 refer to 1st, 2nd and 3rd nearest-
neighbor hopping, respectively. Thus, the generalized
model allows for non-trivial edged systems, such as
mixed-edge notches to be calculated. Used within the
coherent transport formalism, this model has also been
shown to faithfully reproduce DFT transport results
[35, 48] calculated using TranSIESTA [71], which ap-
plies a non-equilibrium Green’s function formalism to the
SIESTA DFT method [72, 73].

We have introduced two types of random edge-defects
into the ZGNR device region; vacancies and impurity
edge-disorder. Vacancies have been modeled by the
random removal of edge-atoms Specifically, how(?)...
Whereas impurity edge-disorder have been introduced by
random perturbation of the on-site energies of the edge-
atoms using a uniform distribution with range �V <
✏
i

< V , where V takes the value 0.5, 1.0 or 2.0eV, and
✏
i

= 0eV for an unperturbed ZGNR. Are there refs
that directly compare with these ranges(?) Exam-
ples of random, edge-defected ZGNR devices, which are
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(b)

(c)

(d)

FIG. 1: (a) Structure of a pristine 20-5-ZGNR device used in
this study. The physical length and width of the device region
shown is 49.2Å and 9.24Å, respectively. A 20-5-ZGNR device
with (b) 5% random edge-vacancies, (c) 41.25% random edge-
vacancies, and (d) impurity edge-disorder. The colors on the
edge-atoms in (d) indicate the magnitude of strength of the
impurity edge-disorder, with yellow corresponding to strong
positive and purple corresponding to strong negative disorder.

used in this study, are shown in Fig. 1. For simplicity,
we have labeled this system 20-5-ZGNR, where 20 refers
to the device length L measured in terms of the number
of carbon atoms at the edge (along the horizontal direc-
tion), and 5 refers to the width w defined as the number
of carbon atoms at the edges of the device that have
direct contact with the device leads. To avoid the forma-
tion of Klein defects, we have defined the ‘edge’ region for
the vacancy-defected GNRs as being the first two atomic
rows of carbon atoms per edge, consisting of 40 carbon
atoms per edge, with the total percentage vacancy de-
fects being calculated over both edges in the device. For
the impurity edge-disordered GNRs, however, only the
first atomic row of carbon atoms consisting of 20 carbon
atoms per edge were considered.

The magnetic properties are determined by calculating
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Figure 3. (Color on-line). Local spin-polarization for a zero-strained ZGNR device with a
(a) square notch, and (b) V-shaped notch. 20% (maximum) x-strained (c) square, and (d) V-
shaped notched ZGNRs, and 20% (maximum) y-strained (e) square notch, and (f) V-shaped
notched ZGNRs. Yellow (black) refers to spin-up (down), with the magnitude of the spin-
polarization (Equation 3) being indicated by the circle radius. N.b., the local spin-polarization
on the atoms that are directly coupled to the leads, is equal to that of an ideal (unstrained or
strained) ZGNR.

(a) (b)

(c) (d)

(e) (f)

The average spin-polarization per edge-atom (including the notch region) in the ideal and notched
systems for increasing uniaxial strain is shown in Figure 4. For uniaxial strain in the x-direction
(Figure 4a), an increase in the average spin-polarization per edge-atom occurs for both spin-types as
a function of the increasing strain, with similar trends seen in all systems. These trends support the
local spin-occupancy results at 20% x-strain (Figure 3c,d), which showed an increase in the local
spin-polarization, particularly across the edges of the device. For uniaxial strain in the y-direction
(Figure 4b), the average spin-polarization per edge-atom in the notched devices decreases as a function
of increasing strain, then starts to level off at high values of strain (>10%). This leveling off of the
average spin-polarization per edge-atom is not apparent for the V-shaped notch system due to the strain
in the y-direction, which works to physically close the notch, and hence continues to improve the overall
itinerancy in the device.
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